МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУЛАРСТВЕННЫЙ	ΓΟCΤ
СТАНДАРТ	ISO 17636-2 –
	201

Неразрушающий контроль сварных соединений

Радиографический контроль

Часть 2

Способы рентгено- и гаммаграфического контроля с применением цифровых детекторов

(ISO 17636-2:2013,

Non-destructive testing of welds – Radiographic testing – Part 2: X- and gamma-ray techniques with digital detectors IDT)

Проект, окончательная редакция

Москва

Стандартинформ

20____

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0–2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2–2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны», Негосударственным образовательным учреждением дополнительного профессионального образования «Научно-учебный центр «Контроль и диагностика» («НУЦ «Контроль и диагностика») и Открытым акционерным обществом «Российский научно-исследовательский институт трубной промышленности» (ОАО «РосНИТИ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны»

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № от 201 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004 – 97	Код страны по МК (ИСО 3166) 004 – 97	Сокращенное наименование нацио- нального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Российская Федерация	RU	Росстандарт

4 Настоящий стандарт идентичен международному стандарту ИСО 17636-2:2013 «Контроль сварных швов неразрушающий. Радиографический контроль. Часть 2. Методы рентгеновского и гамма-излучения с цифровыми детекторами» (ISO 17636-2:2013 «Non-destructive testing of welds – Radiographic testing – Part 2: Xand gamma-ray techniques with digital detectors»).

Степень соответствия – идентичная (IDT).

(Проект, окончательная редакция)

Международный стандарт разработан Европейским комитетом по стандартизации CEN в сотрудничестве с техническим комитетом по стандартизации ISO/TC 44 «Сварка и родственные процессы», подкомитет SC5 «Контроль и исследование сварных швов» Международной организации по стандартизации (ISO) в соответствии с Соглашением о техническом сотрудничестве между ISO и CEN (Венское Соглашение).

Перевод с английского языка (en).

В комплекс стандартов ИСО 17636 под общим наименованием «Неразрушающий контроль сварных соединений. Радиографический контроль» входят:

- часть 1. Способы рентгено- и гаммаграфического контроля с применением пленки;

- часть 2. Способы рентгено- и гаммаграфического контроля с применением цифровых детекторов.

Наименование настоящего стандарта изменено относительно наименования международного стандарта в связи с особенностями построения межгосударственной системы стандартизации

 5 Приказом Федерального агентства по техническому регулированию и метрологии от
 г. №
 межгосударственный стандарт

 ГОСТ ISO 17636-2 – 20
 введен в действие в качестве национального стандарта

 Российской Федерации с
 20
 г.

6 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок – в ежемесячном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе обще-

(Проект, окончательная редакция) го пользования — на официальном сайте Федерального агентства по техническому регулированию

и метрологии в сети Интернет (<u>www.gost.ru</u>)

©Стандартинформ, 201_

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

IV

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Обозначения и сокращения
5 Классификация способов радиографического контроля и принципы компенсации
5.1 Классификация
5.2 Принципы компенсации СРІ, СРІІ и СРІІІ
6 Основные подготовительные операции и требования
6.1 Защита от ионизирующего излучения
6.2 Подготовка поверхности и стадия производства
6.3 Расположение сварного шва на радиографическом снимке (радиограм-
ме)
6.4 Идентификация радиографических снимков (радиограмм)
6.5 Маркировка
6.6 Перекрытие цифровых изображений
6.7 Типы и положения индикаторов качества изображения
6.8 Минимальные значения показателей качества изображения
6.9 Квалификация персонала
7 Рекомендуемые способы получения цифровых радиографических снимков (радио-
грамм)
7.1 Схемы контроля
7.2 Выбор напряжения на трубке и источника излучения
7.3 Детекторные системы и металлические экраны
7.4 Направление пучка излучения
7.5 Уменьшение рассеянного излучения
7.6 Расстояние от источника излучения до объекта контроля
7.7 Способ геометрического увеличения
7.8 Максимальная область при однократной экспозиции
7.9 Обработка данных

(Проект, окончательная редакция)

7.10 Условия просмотра и хранение цифровых радиографических снимков (радиограмм) 8 Протокол контроля..... Приложение А (обязательное) Рекомендуемое количество экспозиций, обеспечивающее приемлемое качество контроля кольцевых стыковых сварных швов..... Приложение В (обязательное) Минимальные значения показателей качества изображения..... Приложение С (обязательное) Определение базового пространственного разрешения Приложение D (обязательное) Определение минимального значения градации серого для CR системы..... Приложение Е (справочное) Значения градации серого. Общие замечания..... Библиография.....

Неразрушающий контроль сварных соединений

Радиографический контроль

Часть 2

Способы рентгено- и гаммаграфического контроля

с применением цифровых детекторов

Non-destructive testing of welds. Radiographic testing. Part 2.

X- and gamma-ray techniques with digital detectors

Дата введения – 201___ – ____ –

1 Область применения

Настоящий стандарт устанавливает основные способы радиографического контроля с целью создания условий для экономичного получения надежных и воспроизводимых результатов. Способы контроля основаны на общепризнанных практиках и фундаментальной теории.

Настоящий стандарт применим для цифрового радиографического контроля соединений металлических материалов, выполненных сваркой плавлением, а именно для контроля сварных соединений листового проката и труб. Под трубой в настоящем стандарте понимают любые цилиндрические полые тела, такие как корпуса котлов, сосуды под давлением, напорные трубопроводы и т.п.

Примечание – Настоящий стандарт соответствует [6].

Настоящий стандарт устанавливает требования к цифровому рентгено- и гаммаграфическому контролю сварных соединений листового проката и труб для обнаружения дефектов компьютерной радиографией (CR), или радиографией с применением цифровых матричных детекторов (DDA).

Цифровые детекторы обеспечивают получение цифрового изображения со значениями градации серого (GV), которое можно просмотреть и оценить с помощью компьютера. Настоящий стандарт определяет рекомендуемый порядок выбора детектора и процедуру радиографического контроля. Выбор компьютера, про-

(Проект, окончательная редакция)

граммного обеспечения, монитора, принтера и условия просмотра важны, но не являются предметом рассмотрения настоящего стандарта. Процедура, установленная настоящим стандартом, обеспечивает минимальные требования к радиографическому контролю, позволяющие получать цифровые радиографические снимки (радиограммы) с чувствительностью контроля эквивалентной установленной в ISO 17636-1 для пленочной радиографии.

В настоящем стандарте не установлены уровни приемки для любых индикаций, обнаруженных на цифровых радиографических снимках (радиограммах).

Если по согласованию между изготовителем и заказчиком применяются более низкие критерии контроля, то возможно, что полученное качество будет существенно ниже, чем в случае строгого применения требований настоящего стандарта.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для недатированных ссылок используют последнее издание ссылочного документа, включая все его изменения:

ISO 5576, Non-destructive testing – Industrial X-ray and gamma-ray radiology – Vocabulary (Контроль неразрушающий. Промышленная радиология с использованием рентгеновских и гамма-лучей. Словарь)

ISO 9712, Non-destructive testing – Qualification and certification of NDT personnel (Неразрушающий контроль. Квалификация и аттестация персонала)

ISO 16371-1, Non-destructive testing – Industrial computed radiography with storage phosphor imaging plates – Part 1: Classification of systems (Неразрушающий контроль. Промышленная компьютерная радиография с фосфорными пластинами для хранения изображения. Часть 1. Классификация систем)

ISO 19232-1, Non-destructive testing – Image quality of radiographs – Part 1: Image quality indicators (wire type) – Determination of image quality value (Контроль неразрушающий. Качество изображений на радиографических снимках. Часть 1. Определение значения качества изображения с помощью проволочных индикаторов)

(Проект, окончательная редакция)

ISO 19232-2, Non-destructive testing – Image quality of radiographs – Part 2: Image quality indicators (step/hole type) – Determination of image quality value (Контроль неразрушающий. Качество изображения на радиографических снимках. Часть 2. Определение значения качества изображения с использованием индикаторов качества изображения типа шаг/отверстие)

ISO 19232-4, Non-destructive testing – Image quality of radiographs – Part 4: Experimental evaluation of image quality values and image quality tables (Контроль неразрушающий. Качество изображений на радиографических снимках. Часть 4. Экспериментальная оценка значений качества изображения и таблицы качества изображения)

ISO 19232-5, Non-destructive testing – Image quality of radiographs – Part 5: Determination of the image unsharpness value using duplex wire-type image quality indicators (Контроль неразрушающий. Качество изображения на рентгеновских снимках. Часть 5. Определение значения нерезкости изображения с использованием показателей качества изображения типа дуплексного провода)

EN 12543 (all parts), Non-destructive testing – Characteristics of focal spots in industrial X-ray systems for use in non-destructive testing (Неразрушающий контроль. Характеристика фокусных пятен в промышленных рентгеновских установках для неразрушающего контроля, все части)

EN 12679, Non-destructive testing – Determination of the size of industrial radiographic sources – Radiographic method (Неразрушающий контроль. Определение размеров промышленных радиографических источников. Радиографический метод)

3 Термины и определения

В настоящем стандарте применены термины по ISO 5576, а также следующие термины с соответствующими определениями:

3.1 компьютерная радиография (computed radiography), CR, система с запоминающей фосфорной пластиной: Полноценная система, включающая в себя запоминающую фосфорную пластину (IP) и соответствующее устройство считывания

(Проект, окончательная редакция)

(сканер или считыватель), которое преобразует информацию с IP в цифровое изображение.

3.2 запоминающая фосфорная пластина (storage phosphor imaging plate), IP: Фотостимулируемый люминесцентный материал, способный хранить скрытое радиографическое изображение объекта контроля и под воздействием источника красного света с соответствующей длиной волны генерирующий люминесценцию (свечение) пропорционально поглощенному излучению.

П р и м е ч а н и е – В случае компьютерной радиографии, IP используется вместо пленки. При определении способов, связанных с размером источника или фокусным расстоянием, IP называется детектором, т.е. SDD – расстояние от источника излучения до детектора.

3.3 система с матричным цифровым детектором(digital detector array system), DDA-система: Электронное устройство, преобразующее ионизирующее или проникающее излучение в массив отдельных аналоговых сигналов, который позднее оцифровывается и передается на компьютер для отображения как цифрового изображения, соответствующего распределению радиационной энергии, переданной на приемную поверхность устройства.

3.4 структурный (собственный) шум запоминающей пластины (structure noise of imaging plate, structure noise of IP), структурный шум IP: Шум, обусловленный неоднородностями в чувствительном слое (зернистостью) и поверхности запоминающей пластины.

П р и м е ч а н и е 1 – После сканирования экспонированной пластины неоднородности проявляются как накладывающийся шум с фиксированной текстурой на цифровом изображении.

П р и м е ч а н и е 2 – Этот шум ограничивает максимальное достижимое качество цифровых изображений, полученных при CR радиографии, и его можно сравнить с зернистостью пленочных изображений.

3.5 структурный (собственный) шум матричного цифрового детектора (structure noise of digital detector array, structure noise of DDA), структурный шум DDA: Шум, обусловленный различными свойствами элементов детектора (пикселей).

П р и м е ч а н и е – После считывания экспонированной ненастроенной DDA, неоднородности проявляются как накладывающийся шум с фиксированной текстурой на

4

(Проект, окончательная редакция)

цифровом изображении. Поэтому для всех DDA требуется настройка с использованием программного обеспечения (программное обеспечение и руководства поставляются изготовителем DDA). Соответствующая процедура настройки снижает структурный шум.

3.6 значение градации серого (grey value), GV: Числовое значение пикселя на цифровом изображении.

П р и м е ч а н и е – Это, как правило, равнозначно терминам: значение пикселя, отклик детектора, сигнал аналого-цифрового преобразователя (цифровой выходной сигнал) и сигнал детектора.

3.7 линеаризованное значение градации серого (linearized grey value), GV_{lin}: Числовое значение пикселя, которое прямо пропорционально дозе экспозиции детектора, принимающее значение ноль, если детектор не экспонировался.

П р и м е ч а н и е – Это, как правило, равнозначно терминам: линеаризованное значение пикселя и линеаризованный сигнал детектора.

3.8 базовое пространственное разрешение цифрового детектора (basic spatial resolution of a digital detector), $SR_b^{detector}$: Соответствует половине измеренной на детекторе нерезкости цифрового изображения и соответствует эффективному размеру пикселя, и характеризует наименьший размеробъекта, который может быть разрешен (отображен) с помощью цифрового детектора при коэффициенте увеличения, равном единице.

П р и м е ч а н и е 1 – Для ее измерения IQI двухпроволочного типа располагается непосредственно на цифровом детекторе или запоминающей пластине.

Примечание 2 – Процедура измерения нерезкости описана в ISO 19232-5, а также в [13] и [8].

3.9 базовое пространственное разрешение цифрового изображения (basic spatial resolution of a digital image), SR_b^{image}: Соответствует половине измеренной нерезкости цифрового изображения и соответствует эффективному размеру пикселя, и характеризует наименьший размер объекта, который может быть разрешен (отображен) на цифровом изображении.

Примечание 1 – Для этого измерения IQI двухпроволочного типа располагается непосредственно на объекте контроля со стороны источника излучения.

Примечание 2 – Процедура измерения нерезкости описана в ISO 19232-5, а также в [13] и [8].

5

(Проект, окончательная редакция)

3.10 отношение сигнал-шум (signal-to-noise ratio), SNR: Отношение среднего значения линеаризованных значений градации серого к стандартному отклонению линеаризованныхградаций серого (шум) в области цифрового изображения, представляющей интерес.

3.11 нормализованное отношение сигнал-шум (normalized signal-to-noise ratio), SNR_N: Отношение сигнал-шум (SNR), приведенное к базовому пространственному разрешению (SR_b), измеренное непосредственно на цифровом изображении и (или) вычисленное с использованием измеренного SNR (SNR_{measured}) по формуле:

$$SNR_{\rm N} = SNR_{\rm measured} \frac{88,6 \, {\rm MKM}}{SR_{\rm b}}$$

3.12 отношение контраст-шум (contrast-to-noise ratio), CNR: Отношение разности средних уровней сигналов между двумя областями изображения к усредненному стандартному отклонению уровней сигналов.

П р и м е ч а н и е – Отношение контраст-шум описывает компонент качества изображения и приблизительно зависит от произведения радиографического коэффициента ослабления и SNR. Необходимо, чтобы, кроме соответствующего CNR, цифровой радиографический снимок (радиограмма) имел нерезкость или базовое пространственное разрешение достаточные для разрешения (отображения) элементов изделия, представляющих интерес.

3.13 нормализованное отношение контраст-шум (normalized contrast-tonoise ratio), CRN_N : Отношение контраст-шум (CNR), приведенное к базовому пространственному разрешению (SR_b) измеренное непосредственно на цифровом изображении и (или) вычисленное с использованием измеренного CNR по формуле:

$$CNR_{\rm N} = CNR \ \frac{88,6 \text{ мкm}}{SR_{\rm b}}$$

3.14 эффект наложения (aliasing): Артефакты, которые появляются на изображении, когда входная пространственная частота выше, чем способная воспроизводиться на выходе.

П р и м е ч а н и е – Эффект наложения часто проявляется в виде зубчатых или ступенчатых участков линий или муаровых полос.

(Проект, окончательная редакция)

3.15 пиксель ядра скопления (cluster kernel pixel), СКР: Дефектный (плохой) пиксель, имеющий менее пяти соседних корректно функционирующих пикселей.

Примечание – Подробнее о плохих пикселях и СКР см. [11].

3.16 номинальная толщина (nominal thickness), *t*: Толщина основного металла без учета допусков на изготовление.

3.17 изменение просвечиваемой толщины (penetration thickness change), *∆t*: Изменение толщины из-за угла прохождения пучка по сравнению с номинальной толщиной.

3.18 просвечиваемая толщина (penetrated thickness), *w*: Толщина материала в направлении пучка излучения, вычисляемая на основе номинальной толщины всех просвечиваемых стенок и измеренная вдоль центральной оси пучка излучения.

3.19 расстояние от объекта контроля до детектора (object-to-detector distance), *b*: Наибольшее расстояние между поверхностью объекта контроля со стороны источника излучения и чувствительной поверхностью детектора вдоль центральной оси пучка излучения.

3.20 размер источника (source size), *d*: Размер активной части источника излучения или размер фокусного пятна.

Примечание – См. EN 12679 или EN 12543.

3.21 расстояние от источника излучения до детектора (source-to-detector distance), SDD: Расстояние между источником излучения и детектором, измеренное в направлении центральной оси пучка излучения (фокусное расстояние).

 Π римечание – SDD = f + b,

где f – расстояние от источника излучения до объекта контроля;

b – расстояние от объекта контроля до детектора.

3.22 расстояние от источника излучения до объекта контроля (source-toobject distance), *f*: Расстояние между источником излучения и стороной объекта контроля, обращенной к источнику (дальней стороной от детектора), измеренное вдоль центральной оси пучка излучения.

3.23 наружный диаметр (external diameter), *D*_e: Номинальный наружный диаметр трубы.

(Проект, окончательная редакция)

3.24 **геометрическое увеличение** (geometric magnification), *v*: Отношение расстояния от источника излучения до детектора (SDD) к расстоянию от источника излучения до объекта контроля (*f*).

4 Обозначения и сокращения

В настоящем стандарте применяют обозначения и сокращения, приведенные в таблице 1.

Т а б л и ц а 1 – Обозначения, сокращения и их значения

Обозначение или сокра- щение	Значение
b	расстояние от объекта контроля до детектора
b'	расстояние от объекта контроля до детектора, измеренное перпендикулярно объекту контроля
d	размер источника излучения, фокусного пятна
De	наружный диаметр
f	расстояние от источника излучения до объекта контроля
f'	расстояние от источника излучения до объекта контроля, измеренное пер- пендикулярно объекту контроля
SNR	отношение сигнал - шум
<i>SNR</i> _N	нормализованное отношение сигнал - шум
t	номинальная толщина
Δt	изменение просвечиваемой толщины
u _G	геометрическая нерезкость
ui	собственная нерезкость детекторной системы, за исключением любой гео- метрической нерезкости, измеренная на цифровом изображении при распо- ложении IQI двухпроволочного типа на детекторе
$u_{ m im}$	требуемая нерезкость изображения, измеренная на цифровом изображении в плоскости объекта контроля с помощью IQI двухпроволочного типа
<i>u</i> _T	суммарная нерезкость изображения, включая геометрическую нерезкость, измеренная на цифровом изображении в плоскости детектора с помощью IQI двухпроволочного типа, расположенного на поверхности объекта.
v	геометрическое увеличение
W	просвечиваемая толщина
СКР	пиксель ядра скопления
CNR	отношение контраст - шум
CNR _N	нормализованное отношение контраст - шум
CR	компьютерная радиография
D	детектор
DDA	матричный цифровой детектор
IP	запоминающая фосфорная пластина
IQI	индикатор качества изображения
S	источник излучения
SDD	расстояние от источника излучения до детектора
SR _b	базовое пространственное разрешение, определенное с помощью IQI двух-

	проволочного типа, прилегающего к детектору
SR _b ^{detector}	базовое пространственное разрешение цифрового детектора
$\mathrm{SR}_{\mathrm{b}}^{\mathrm{image}}$	базовое пространственное разрешение, определенное с помощью IQI двух- проволочного типа, расположенного на объекте контроля со стороны источ- ника излучения
HAZ (3TB)	Зона термического влияния

5 Классификация способов радиографического контроля и

принципы компенсации

5.1 Классификация

Способы радиографического контроля делят на два класса:

- класс А: основные способы;

- класс В: улучшенные способы.

Способы класса качества В используют, когда изображение класса качества А может быть недостаточно чувствительным для обнаружения дефектов.

По согласованию между изготовителем и заказчиком возможно применение способа радиографического контроля выше класса В путем указания всех необходимых параметров контроля.

Выбор способа радиографического контроля должен быть согласован между изготовителем и заказчиком.

Тем не менее, при использовании способов класса А и класса В соответственно, видимость дефектов с использованием пленочной или цифровой радиографии эквивалентна. Видимость должна быть доказана с помощью индикаторов качества изображения (IQI) в соответствии с ISO 19232-1 или ISO 19232-2 и ISO 19232-5.

Если по техническим или производственным причинам невозможно выполнить одно из условий, указанных для класса В, например, тип источника излучения или расстояние от источника излучения до объекта контроля f, то между изготовителем и заказчиком может быть согласовано, что данное условие может быть принято, как для класса А. Потеря чувствительности контроля должна быть компенсирована увеличением минимального значения градации серого и SNR_N для CR, или SNR_N для DDA-системы (рекомендуется увеличение SNR_N на коэффициент более 1,4). При получении лучшей чувствительности, чем требуется для класса А, объект

(Проект, окончательная редакция)

можно считать проконтролированным по классу В, если по IQI достигнута соответствующая чувствительность.

Указанное условие не применимо, если было специально уменьшено SDD, как описано в 7.6, для схем контроля по 7.1.4 и 7.1.5.

5.2 Принципы компенсации СРІ, СРІІ и СРІІІ

5.2.1 Общие положения

В настоящем стандарте применяются три принципа компенсации (5.2.2 – 5.2.4) для достижения достаточной контрастной чувствительности при радиографии с применением цифровых детекторов.

При применении этих принципов требуется достижение минимального отношения контраст – шум, приведенного к базовому пространственному разрешению детектора(CNR_N), для обнаруживаемого изменения толщины материала Δw . Если требуемое нормализованное отношение контраст – шум (CNR_N на единицу Δw) не может быть достигнуто из-за недостаточного значения одного из следующих параметров, это может быть компенсировано увеличением SNR.

5.2.2 CPI

Компенсация снижения контраста (например за счет повышения напряжения на трубке) путем увеличения SNR (например увеличением тока трубки или времени экспозиции).

5.2.3 CPII

Компенсация недостаточной резкости детектора (значение SR_b больше, чем специфицировано) путем увеличения SNR (улучшение значения показателя по IQI на одну проволочку или ступеньку с отверстием для каждой недостающей пары проволочек IQI двухпроволочного типа).

5.2.4 CPIII

Компенсация увеличения местной интерполяционной нерезкости в результате корректировки плохих пикселей DDA, путем увеличения SNR.

5.2.5 Теоретические основы

Для малых размеров дефектов (Δw значительно меньше *w*) эти принципы компенсации основаны на следующей аппроксимации:

$$\frac{\mathrm{CNR}_{\mathrm{N}}}{\Delta w} = c \frac{\mu_{\mathrm{eff}} \mathrm{SNR}}{\mathrm{SR}_{\mathrm{b}}},$$

где с – константа;

*μ*_{eff} – эффективный коэффициент ослабления, который эквивалентен коэффициенту контрастности материала;

CNR_N – нормализованное CNR, измеренное на цифровом изображении.

6 Основные подготовительные операции и требования

6.1 Защита от ионизирующего излучения

ВНИМАНИЕ – Облучение любой части тела человека рентгеновским или гаммаизлучением может быть чрезвычайно опасным для здоровья. В случае использования рентгеновского оборудования или источников радиоактивного излучения необходимо соблюдать соответствующие требования законодательства.

При использовании ионизирующего излучения необходимо строго соблюдать местные, федеральные или международные правила безопасности.

6.2 Подготовка поверхности и стадия производства

Как правило, подготовка поверхности не требуется, но там, где состояние поверхности или наличие покрытия могут создать помехи при выявлении дефектов, поверхность должна быть гладко зачищена или с нее должно быть удалено покрытие.

Если спецификация на продукцию не оговаривает иное, то цифровой радиографический контроль должен проводиться после завершения всех первичных технологических операций производства (например зачистки или термической обработки).

6.3 Расположение сварного шва на радиографическом снимке (радио-

грамме)

Если на цифровом радиографическом снимке (радиограмме) не отображаются границы сварного шва, то с каждой стороны шва следует поместить маркировочные знаки высокой плотности.

11

6.4 Идентификация радиографических снимков (радиограмм)

На каждый участок объекта, контролируемого при помощи цифровой радиографии, следует поместить маркировочные знаки. Изображения этих знаков должны быть по возможности отображены на цифровом радиографическом снимке (радиограмме) за пределами зоны контроля, и должны обеспечивать однозначную идентификацию участка.

6.5 Маркировка

На объекте контроля должна быть выполнена постоянная маркировка, чтобы обеспечить наличие точек отсчета для точного определения положения каждого цифровго радиографического снимка (радиограммы) (например, начало отсчета, направление, идентификация, мерный пояс).

Если свойства материала и (или) условия его эксплуатации не позволяют нанести постоянную маркировку, положение можно зарегистрировать с помощью точного эскиза или фотографии.

6.6 Перекрытие цифровых изображений

Если радиографический контроль участка сварного шва производится двумя или более отдельными детекторами (запоминающими пластинами), они должны перекрывать друг друга для обеспечения полного охвата всей зоны контроля.

Выполнение этого условия должно быть проверено по маркировочному знаку из материала высокой плотности, расположенному на поверхности объекта контроля, который должен отобразиться на каждом цифровом изображении. Если радиографические снимки (радиограммы) получаются последовательно, маркировочный знак высокой плотности должен быть виден на каждом радиографическом снимке (радиограмме).

6.7 Типы и положения индикаторов качества изображения

Качество изображения следует проверять с помощью индикаторов качества изображения (IQI),соответствующих ISO 19232-5 и ISO 19232-1 или ISO 19232-2.

В соответствии с процедурой, описанной в приложении С, для проверки базового пространственного разрешения цифровой детекторной системы требуется

12

(Проект, окончательная редакция)

изображение IQI двухпроволочного типа. Для проверки соответствия оборудования системы требованиям, указанным в таблицах В.13 и В.14 приложения В в зависимости от просвечиваемой толщины материала, должно быть определено базовое пространственное разрешение или показатель качества изображения по IQI двухпроволочного типа. При этом IQI двухпроволочного типа должен быть размещен непосредственно на цифровом детекторе. Применение IQI двухпроволочного типа (по ISO 19232-5) при получении радиографических снимков (радиограмм) изделия не обязательно. Требование о применении IQI двухпроволочного типа дополнительно к IOI проволочного типа при радиографическом контроле изделия может быть согласовано между изготовителем и заказчиком. При использовании IQI двухпроволочного типа для радиографических снимков (радиограмм) изделия, он должен быть размещен на объекте контроля. Измеренное базовое пространственное разрешение цифрового изображения (SR_b^{image}) (см. приложение С) не должно превышать максимальные значения, указанные в таблицах В.13 или В.14 приложения В для просвечиваемых толщин материалов. В качестве просвечиваемой толщины материала с одиночным изображением объекта контроля принимается толщина одной стенки. При контроле через две стенки с двойным изображением (рисунки 11 или 12), с IQI двухпроволочного типа, расположенным на трубе со стороны источника излучения, для определения требуемого базового пространственного разрешения цифрового (SR_b^{image}) по таблицам В.13, В.14 приложения В просвечиваемая толизображения щина материала принимается равной наружному диаметру трубы. Базовое пространственное разрешение детектора (SR_b^{detector}) при контроле через две стенки с двойным изображением должно соответствовать значениям таблицы В.13 и В.14 приложения В, выбранным исходя из удвоенной номинальной толщины стенки, как просвечиваемой толщины материала.

Если применяется способ геометрического увеличения (см 7.7) со значением v >1,2, то IQI двухпроволочного типа (см. ISO 19232-5) должен быть использован на всех радиографических снимках (радиограммах) изделия.

IQI двухпроволочного типа должен быть расположен под наклоном в несколько градусов (от 2° до 5°) к цифровым строкам или столбцам цифрового изображе-

(Проект, окончательная редакция)

ния. Если IQI расположен под 45° к цифровым строкам или столбцам, полученный номер пары проволочек IQI должен быть уменьшен на единицу.

Контрастная чувствительность цифровых изображений должна быть проверена с помощью индикаторов качества изображения (IQI), в соответствии с конкретной областью применения, как указано в таблицах В.1 – В.12 приложения В (см. также ISO 19232-1 или ISO 19232-2).

Соответствующие IQI проволочного или ступенчатого с отверстиями типа должны быть помещены на исследуемом объекте предпочтительно со стороны источника излучения в центре зоны контроля на основной металл рядом со сварным швом. IQI должен плотно контактировать с поверхностью объекта контроля. IQI должен быть расположен на участке с равномерной толщиной, характеризующемся однородным распределением градаций серого (средних значений) на цифровом изображении.

В соответствии с типом используемогоIQI следует рассмотреть следующие случаи:

а) при использовании IQI проволочного типа проволочки должны располагаться перпендикулярно сварному шву, и его расположение должно гарантировать, что не менее 10 мм длины проволочки видимы на участке с постоянным значением градации серого или SNR_N, который, как правило, располагается на основном металле вблизи сварного шва. Для экспозиций, выполняемых в соответствии с 7.1.6 и 7.1.7, IQI проволочного типа может быть помещен проволочками поперек оси трубы, при этом не рекомендуется, чтобы они проецировались на изображение сварного шва;

б) при использовании IQI ступенчатого с отверстиями типа он должен располагаться таким образом, чтобы отверстие требуемого размера располагалось максимально близко к сварному шву.

Для экспозиций, выполняемых в соответствии с 7.1.6 и 7.1.7, IQI используемого типа может быть расположен как со стороны источника излучения, так и со стороны детектора. Если IQI не могут быть помещены в соответствии с вышеуказанными условиями, то их помещают со стороны детектора. В этом случае качество

(Проект, окончательная редакция) изображения следует определять, как минимум однократно, путем сравнительной экспозиции с одним IQI, помещенным со стороны источника излучения, и IQI, помещенным со стороны детектора, выполненной в тех же условиях. Если перед детектором применяются фильтры (экраны), IQI должен быть расположен перед филь-

тром (экраном). При экспозициях через две стенки, когда IQI помещается со стороны детектора, вышеописанная процедура не требуется. В этом случае следует применять таблицы соответствия В.9 – В.14 приложения В.

Если IQI располагаются со стороны детектора, то рядом с IQI следует поместить букву «F», и это должно быть зафиксировано в протоколе контроля.

Идентификационные номера, и при применении, свинцовая буква «F» не должны располагаться в зоне контроля, за исключением случая, когда геометрическая форма объекта контроля не позволяет это сделать.

Если были предприняты меры, гарантирующие, что цифровые радиографические снимки (радиограммы) аналогичных объектов контроля или их участков были получены при идентичных экспозициях и методах обработки, и нет видимых различий в качестве изображения, то нет необходимости проверять качество изображения для каждого цифрового радиографического снимка (радиограммы). Объем проверки качества изображений рекомендуется согласовать между изготовителем и заказчиком.

При экспозициях труб с наружным диаметром 200 мм и более и с центральным расположением источника рекомендуется размещать, как минимум, три IQI с равными промежутками по окружности. Изображения IQI считаются характерными для всей окружности.

6.8 Минимальные значения показателей качества изображения

В таблицах В.1 – В.14 приложения В приведены минимальные значения показателей качества изображения для металлических материалов. Для других материалов эти или аналогичные требования могут быть согласованы между изготовителем и заказчиком. Требования должны быть определены в соответствии с ISO 19232-4.

(Проект, окончательная редакция)

В случае, когда используются источники Ir 192 или Se 75, по согласованию между изготовителем и заказчиком могут считаться приемлемыми худшие показатели качества по IQI, чем те, что приведены в таблицах В.1 – В.12 приложения В, а именно:

1) Способы получения двойного изображения через две стенки, классы A и B (*w* = 2*t*):

- 10 мм $< w \le 25$ мм: меньше на один номер проволочки или больше на один номер отверстия для Ir 192;

- 5 мм <w ≤ 12 мм: меньше на один номер проволочки или больше на один номер отверстия для Se 75.

2) Способы получения одного изображения через одну стенку и одного изображения через две стенки, класс А:

- 10 мм <*w* ≤ 24 мм: меньше на два номера проволочки или больше на два номера отверстия для Ir 192;

- 24 мм $< w \le 30$ мм: меньше на один номер проволочки или больше на один номер отверстия для Ir 192;

- 5 мм <w ≤ 24 мм: меньше на один номер проволочки или больше на один номер отверстия для Se 75.

3) Способы получения одного изображения через одну стенку и одного изображения через две стенки, класс В:

- 10 мм <w ≤ 40 мм: меньше на один номер проволочки или больше на один номер отверстия для Ir 192;

- 5 мм $< w \le 20$ мм: меньше на один номер проволочки или больше на один номер отверстия для Se 75.

6.9 Квалификация персонала

Персонал, выполняющий неразрушающий контроль в соответствии с настоящим стандартом, должен быть квалифицирован в соответствии с ISO 9712 или эквивалентным стандартом на требуемый уровень в соответствующем промышленном секторе. Персонал должен подтвердить, что прошел дополнительное обучение и квалификацию в цифровой промышленной радиографии.

7 Рекомендуемые способы получения радиографических снимков (радиограмм)

П р и м е ч а н и е – Если не указано иное, расшифровка обозначений, используемых на рисунках 1 – 21, приведена в разделе 4.

7.1 Схемы контроля

7.1.1 Общие положения

В общем случае, радиографический контроль следует осуществлять в соответствии со схемами по 7.1.2 – 7.1.9.

Схему контроля на эллипс (просвечивание через две стенки с получением двойного изображения) в соответствии с рисунком 11 не рекомендуется применять для труб наружным диаметром $D_e > 100$ мм, толщиной стенки t > 8 мм или шириной сварного шва более $D_e/4$. Если отношение $t/D_e < 0,12$, то достаточно двух изображений, смещенных друг относительно друга на 90°; в противном случае необходимы три изображения. Расстояние между двумя спроецированными изображениями шва должно быть примерно равно ширине сварного шва.

Когда затруднительно проведение контроля с использованием схемы на эллипс при $D_e \le 100$ мм, можно использовать схему перпендикулярной съемки в соответствии с 7.1.7 (см. рисунок 12). В таком случае требуются три экспозиции, отстоящие друг от друга на 120° или 60°.

Для схем контроля, соответствующих рисункам 11, 13 и 14, угол наклона пучка должен быть как можно меньше, но в тоже время таким, чтобы не было наложения двух изображений. В соответствии с 7.6 для схемы, показанной на рисунке 13, расстояние от источника излучения до объекта контроля f должно быть как можно меньше. IQI должен быть расположен вплотную к детектору, со свинцовой буквой «F».

При необходимости, например из-за особенностей геометрии детали или различий в толщине материала, по согласованию между изготовителем и заказчиком могут быть использованы другие схемы цифрового радиографического контроля. В

(Проект, окончательная редакция)

7.1.9 представлен пример такого случая. Помимо этого, компенсация толщины может осуществляться тем же материалом.

П р и м е ч а н и е – В приложении А приведено минимальное количество радиографических снимков (радиограмм), необходимое для полного покрытия всей окружности стыкового сварного шва в трубе.

Если не используется способ геометрического увеличения, детектор должен быть расположен как можно ближе к объекту контроля.

При невозможности применения гибких детекторов, применяют жесткие кассеты или плоские цифровые матричные детекторы, как показано на рисунках 2 δ , 8 δ , 13 δ и 14 δ , и расстояние от источника излучения до детектора SDD должно быть рассчитано по толщине стенки t, наибольшему расстоянию от детектора до поверхности объекта контроля со стороны источника b и размера фокусного пятна или размера источника d, как указано в 7.6 и формулах (3) и (4).

7.1.2 Источник излучения расположен напротив объекта контроля, а детектор с противоположной стороны – рисунок 1.

Рисунок 1 – Схема контроля для плоских сварных швов при просвечивании через одну стенку

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

7.1.3 Источник излучения снаружи объекта контроля, а детектор внутри – рисунки 2 – 4.

а) С гибкими детекторами

б) С плоскими детекторами

Рисунок 2 – Схема контроля изогнутых объектов при просвечивании через одну

Рисунок 3 – Схема контроля изогнутых объектов при просвечивании через одну стенку (сварной шов вставной детали)

(Проект, окончательная редакция)

Рисунок 4 – Схема контроля изогнутых объектов при просвечивании через одну

стенку (сварной шов наложенной детали)

7.1.4 Источник излучения расположен в центре объекта контроля, а детектор – снаружи – рисунки 5 – 7.

Рисунок 5 – Схема контроля изогнутых объектов при просвечивании через одну стенку. Плоские детекторы не применимы

Рисунок 6 – Схема контроля изогнутых объектов при просвечивании через одну стенку (сварной шов вставной детали)

(Проект, окончательная редакция)

Рисунок 7 – Схема контроля изогнутых объектов при просвечивании через одну стенку (сварной шов наложенной детали)

7.1.5 Источник излучения расположен внутри и вне центра объекта, а детектор снаружи – рисунки 8 – 10.

Рисунок 8 – Схема контроля изогнутых объектов при просвечивании через одну

стенку

Рисунок 9 – Схема контроля изогнутых объектов при просвечивании через одну

стенку (сварной шов вставной детали)

(Проект, окончательная редакция)

Рисунок 10 – Схема контроля изогнутых объектов при просвечивании через одну

стенку (сварной шов наложенной детали)

7.1.6 Схема контроля на эллипс – рисунок 11.

П р и м е ч а н и е – Расстояние от источника излучения до объекта контроля может быть аппроксимировано перпендикулярным расстоянием f', рассчитываемым по b'.

Рисунок 11 – Схема контроля изогнутых объектов для контроля двух стенок при просвечивании через две стенки (двойное изображение, источник излучения и

детектор – снаружи)

7.1.7 Схема перпендикулярного просвечивания – рисунок 12.

Рисунок 12 – Схема контроля изогнутых объектов для контроля двух стенок при просвечивании через две стенки (двойное изображение, источник излучения и детектор – снаружи)

22

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

7.1.8 Источник излучения расположен вне объекта, а детектор – с другой стороны – рисунки 13 – 18.

а) С гибкими детекторами

б) С плоскими детекторами

Рисунок 13 – Схема контроля изогнутых объектов при просвечивании через две стенки (одно изображение) для контроля стенки, ближайшей к детектору;

IQI располагается на детекторе

а) С гибкими детекторами

б) С плоскими детекторами

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

Рисунок 15 – Схема контроля продольного сварного шва при просвечивании через

Рисунок 16 – Схема контроля изогнутых объектов при просвечивании через две стенки (одно изображение) для оценивания стенки, ближайшей к детектору

1 – кромочный компенсатор

а) Схема контроля без кромочного

б) Схема контроля с кромочным

компенсатора

компенсатором

Рисунок 17 – Схема контроля при просвечивании угловых сварных швов

Рисунок 18 – Схема контроля при просвечивании угловых сварных швов 7.1.9 Схема контроля для материалов различной толщины – рисунок 19.

Рисунок 19 – Схема контроля с использованием нескольких детекторов.

Применяется только для CR

7.2 Выбор напряжения на трубке и источника излучения

7.2.1 Источники рентгеновского излучения с напряжением до 1000 кВ

Для обеспечения высокой чувствительности контроля рекомендуется напряжение на рентгеновской трубке устанавливать по возможности более низким и иметь SNR_N в цифровом изображении как можно выше. Рекомендуемые максимальные значения напряжения на трубке в зависимости от просвечиваемой толщины приведены на рисунке 20. Эти максимальные значения являются наилучшими для пленочной радиографии. ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

Рисунок 20 – Максимальное напряжение на рентгеновской трубке для источников до 1000 кВ как функция от просвечиваемой толщины и материала

После точной настройки DDA могут обеспечивать достаточное качество изображения при значительно более высоких напряжениях, чем приведенные на рисунке 20.

Для контроля по классу В запоминающие пластины с высоким структурным шумом в чувствительном слое IP (крупнозернистые) рекомендуется применять при напряжении на рентгеновской трубке примерно на 20 % меньшем, чем показано на рисунке 20. Запоминающие пластины высокого разрешения, которые экспонируются аналогично рентгеновским пленкам и имеют низкий структурный шум (мелкозернистые), могут экспонироваться при напряжениях на рентгеновской трубке в соответствии с рисунком 20 или значительно более высоких, если SNR_N достаточно увеличено.

Примечание: СРІ:

26

(Проект, окончательная редакция)

улучшение контрастной чувствительности может быть достигнуто повышением контраста при постоянном SNR_N [путем уменьшения напряжения на трубке и компенсации большей экспозицией (например, мА х мин)]; или

– улучшение контрастной чувствительности увеличением SNR_N [путем увеличения экспозиции (например, мА х мин)] при постоянном контрасте (постоянный уровень напряжения, кВ);

при увеличении напряжения на трубке [при постоянной экспозиции (например, мА х мин)] снижается контраст и увеличивается SNR_N. Контрастная чувствительность улучшается, если увеличение SNR_N больше, чем уменьшение контраста из-за более высокой энергии.

В тех случаях, когда имеется изменение толщины по контролируемой области объекта, может быть использован модифицированный способ с более высоким напряжением, но при чрезмерно высоком напряжении на трубке происходит потеря чувствительности контроля.

7.2.2 Прочие источники излучения

В таблице 2 приведены рекомендуемые диапазоны просвечиваемых толщин для источников гамма-излучения и рентгеновского оборудования с энергией свыше 1 МэВ.

Т а б л и ц а 2 – Диапазон просвечиваемых толщин для источников гамма-излучения и рентгеновского оборудования с энергией выше 1 МэВ для стали и сплавов на основе меди и никеля

Hamaunu yayı yayı	Просвечиваемая толщина w, мм			
источник излучения	Класс А	Класс В		
Tm 170	$w \leq 5$	$w \le 5$		
Yb 169 ^a	$1 \le w \le 15$	$2 \le w \le 12$		
Se 75 ^b	$10 \le w \le 40$	$14 \le w \le 40$		
Ir 192	$20 \le w \le 100$	$20 \le w \le 90$		
Co 60	$40 \le w \le 200$	$60 \le w \le 150$		
Рентгеновское оборудова ние с энергией от 1 до 4 МэВ включ.	$30 \le w \le 200$	$50 \le w \le 180$		
Рентгеновское оборудова- ние с энергией св. 4 до 12 МэВ включ.	$w \ge 50$	$w \ge 80$		
Рентгеновское оборудова- ние с энергией св. 12 МэВ	$w \ge 80$	$w \ge 100$		
^а Для алюминия и титана просе 25 мм ≤ <i>w</i> ≤ 55 мм для класса В. ^b Лля алюминия и титана просв	вечиваемая толщина 10 мм ≤ w ечиваемая толшина 35 мм < w <	≤ 70 мм для класса А и < 120 мм для класса А		

(Проект, окончательная редакция)

На тонких стальных образцах гамма-излучение от источников Se 75, Ir 192 и Co 60 не позволяет получить цифровые радиографические снимки (радиограммы) с такой же чувствительностью контроля, как при рентгеновском излучении, использованном с надлежащими техническими параметрами. Однако, поскольку источники гамма-излучений имеют преимущества в обращении и доступности, в таблице 2 приведен диапазон толщин, для которых может быть использован каждый из этих источников гамма-излучения, в случае, когда применение рентгеновских трубок затруднено.

По согласованию между изготовителем и заказчиком просвечиваемая толщина для Ir 192 может быть уменьшена до 10 мм, а для Se 75 – до 5 мм.

В определенных случаях допускается более широкий диапазон толщин, если может быть достигнуто удовлетворительное качество изображения

При получении цифровых радиографических снимков (радиограмм) компьютерной радиографией с использованием гамма-излучения, время установки источника излучения в положение просвечивания не должно превышать 10 % от общего времени экспозиции. При использовании DDA время просвечивания должно начинаться с момента установки источника излучения в положение просвечивания и заканчиваться до момента возвращения источника излучения в исходное положение.

Максимальные просвечиваемые толщины, приведенные в таблице 2, могут быть превышены, если можно подтвердить достаточную чувствительность по IQI.

7.3 Детекторные системы и металлические экраны

7.3.1 Минимальное значение нормализованного отношения сигнал-шум

При цифровом радиографическом контроле должны быть достигнуты минимальные значения SNR_N , приведенные в таблицах 3 и 4, или минимальные значения градации серого (только для CR). В приложении D описана процедура измерения SNR_N и приведена таблица преобразования для пользователей, предпочитающих использовать ненормализованные измеренные значения SNR вместо нормализованных значений SNR_N .

Вместо минимальных значений SNR_N для CR могут быть использованы эквивалентные минимальные значения градаций серого, если они определены с помо-

(Проект, окончательная редакция)

щью процедуры, приведенной в приложении D для IP, сканера, его настроек и требуемых по таблицам 3 и 4 значений SNR_N, которые были использованы.

Т а б л и ц а 3 – Минимальные значения SNR_N (для CR и DDA) и металлические передние экраны (только для CR) для цифрового радиографического контроля сталей и сплавов на основе меди и никеля

11	Просве- чиваемая	Минимальное значение SNR _N ^с		Тип и толщина металличе-
источник излучения	толщина <i>w</i> , мм	Класс А	Класс В	ских передних экранов
Рентгеновское оборудо- вание с напряжением на трубке до 50 кВ включ.		100	150	Нет экрана
Рентгеновское оборудо- вание ^d с напряжением на трубке св. 50 до 150 кВ включ.	-	70	120	Передний экран из свинца толщиной не более 0,1 мм
Рентгеновское оборудо- вание ^d с напряжением на трубке св.150 до 250 кВ включ.		70	100	Передний экран из свинца толщиной не более 0,1 мм
Рентгеновское оборудо- вание ^d с напряжением на	$w \leq 50$	70	100	Передний экран из свинца толщиной не более 0,3 мм
трубке св.250 до 350 кВ включ.	w>50	70	70	Передний экран из свинца толщиной не более 0,3 мм
Рентгеновское оборудо- вание ^d с напряжением на	$w \leq 50$	70	100	Передний экран из свинца толщиной не более 0,3 мм
трубке св. 350 до 1000 кВ включ	w>50	70	70	Передний экран из свинца толщиной не более 0.3 мм
Yb 169 ^d	$w \le 5$	70	120	Передний экран из свинца толшиной не более 0.1 мм
	w>5	70	100	Передний экран из свинца толщиной не более 0,1 мм
Ir 192 ^d , Se 75 ^d	<i>w</i> ≤50	70	100	Передний экран из свинца толщиной не более 0,3 мм
	w>50	70	70	Передний экран из свинца толщиной от 0.1 до 0.4 мм
Со 60 ^{а,b} , Рентгеновское оборудо-	<i>w</i> ≤ 100	70	100	Передний экран из стали или меди толщиной от 0,3 до 0,8 мм и передний экран из свинца толщиной от 0,6 до 2,0 мм
вание с напряжением на трубке св. 1,0 до 5 МэВ включ.	w>100	70	70	Передний экран из стали или меди толщиной от 0,3 до 0,8 мм и передний экран из свинца толщиной от 0,6 до 2,0 мм
генттеновское осорудо-	$w \leq 100$	70	100	Передний экран из стали,

(Проект, окончательная редакция)

	, ,			
вание ^{а,b} с напряжением на трубке св. 5 МэВ				меди или свинца толщиной от 0,6 до 4,0 мм
	w>100	70	70	Передний экран из стали, меди или свинца толщиной от 0,6 до 4,0 мм

^а В случае применения многослойного экрана из стали и свинца (Fe + Pb), стальной экран должен располагаться между запоминающей пластиной (IP) и свинцовым экраном.

^b Вместо стального экрана или экрана из стали и свинца (Fe или Fe + Pb) могут использоваться медные, танталовые или вольфрамовые экраны при условии, что качество изображения может быть подтверждено.

^с Если SNR_N измеряется в зоне термического влияния (3TB)/основном металле, эти значения должны быть умножены на 1,4, за исключением, если усиление и корень сварного шва находятся на одном уровне с основным металлом.

^d Свинцовые экраны могут быть заменены полностью или частично на стальные или медные (Fe или Cu) экраны. Эквивалентная толщина для стального или медного экрана (Fe или Cu) – в три раза больше толщины свинцового экрана (Pb).

Т а б л и ц а 4 – Минимальные значения SNR_N (для CR и DDA) и металлические передние экраны (только для CR) для цифрового радиографического контроля алюминия и титана

Класс А Класс В передних экранов Рентгеновское оборудование Передний экран из свини	
Рентгеновское оборудование Передний экран из свини	
с напряжением на трубке до 70 120 переднии экран из свини 150 кВ включ. 120 толщиной не более 0,03 г	(а 1м
Рентгеновское оборудование с напряжением на трубке св. 70 100 Передний экран из свини толщиной не более 0,2 м 150 до 250 кВ включ. 70 100	(a 1 ^a
Рентгеновское оборудование с напряжением на трубке св. 70 100 Передний экран из свини толщиной не более 0,2 м 250 до 500 кВ включ. 70 100 толщиной не более 0,2 м	(a 1 ^a
Yb 169 70 100 Передний экран из свини толщиной не более 0,2 м	(a 1 ^a
Se 75 70 100 Передний экран из свини толщиной не более 0,3 м	(a 1 ^a

^а Вместо свинцового экрана толщиной 0,2 мм может применяться экран 0,1 мм с дополнительным фильтром 0,1 мм снаружи кассеты.

^b Если SNR_N измеряется в зоне термического влияния (3TB)/основном металле, эти значения должны быть умножены на 1,4, за исключением, если усиление и корень сварного шва находятся на одном уровне с основным металлом.

Значение SNR_N должно быть измерено около сварного шва рядом с IQI проволочного типа или ступенчатого с отверстиями типа в наиболее толстой части основного металла в зоне с постоянной толщиной стенки и с постоянным значением гра-
(Проект, окончательная редакция)

дации серого. Значения градации серого (только при компьютерной радиографии (CR) должны быть измерены в зоне контроля сварного соединения рядом с IQI проволочного типа или ступенчатого с отверстиями типа. Так как шероховатость материала оказывает влияние на шумы в изображении и SNR_N , значения, приведенные в таблице 3, являются рекомендуемыми. Если измерение SNR_N осуществляется рядом со сварным швом в зоне термического влияния, за исключением случаев, когда усиление и корень сварного шва находятся на одном уровне с основным металлом, минимальные значения SNR_N должны быть увеличены в 1,4 раза по сравнению с таблицами 3 и 4.

П р и м е ч а н и е 1 – При пленочной радиографии значение оптической плотности, измеренное в в зоне термического влияния (3ТВ)/в основном металле, обычно составляет 3,5 - 4 единицы. Это соответствует значению SNR_N, примерно в 1,4 раза большему, чем для центра сварного шва, для которого рекомендуется иметь оптическую плотность снимка 2 или выше. Рекомендуется проводить измерения SNR_N в 3TB, потому что это, как правило, зона с постоянным значением градации серого и в ней имеется возможность точного измерения SNR_N.

Метод определения эквивалентных минимальных значений градации серого (только для CR) вместо требуемых значений SNR_N приведен в приложении D.

В приложении D также приведена таблица преобразования для пользователей, которые предпочитают использовать ненормализованные измеренные значения SNR вместо нормализованных значений SNR_N . Минимальное ненормализованное значение SNR определяется по SR_b детектора и требуемым значениям SNR_N , определенным по таблицам 3 и 4.

Для приемки изображений пользователь CR должен определить минимальные значения градации серого или значения SNR_N или SNR (см. приложение D). По аналогии с минимальной оптической плотностью при пленочной радиографии, для определения приемлемости изображения пользователь DDA должен определить минимальные значения SNR_N или SNR (см. приложение D). Если не указано иное, полученные значения должны соответствовать таблицам 3 и 4. Минимальные значения SNR_N для различных источников излучения и толщин приведены в таблицах 3 и 4.

П р и м е ч а н и е 2 – Подробности измерения SNR_N приведены в ISO 16371-1, [10] (для CR) или [11] (для DDA) и приложении D.

7.3.2 Принцип компенсации II (СРІІ)

Если обе чувствительности по IQI, указанные в таблицах В.1 – В.14 приложения В (контрастная чувствительность по IQI проволочного типа или ступенчатого с

31

(Проект, окончательная редакция)

отверстиями типа с одной стороны и пространственное разрешение детектора по IQI двухпроволочного типа с другой стороны) не могут быть достигнуты одновременно применяемой детекторной системой при используемых условиях экспозиции, то увеличение видимости одиночной проволочки или ступеньки с отверстием на IQI должно компенсировать превышенные значения нерезкости (или превышенные значения SR_b).

Например, если требуемые значения D12 и W16 (для толщины 5 мм, класса В по таблицам В.3 и В.14 приложения В) одновременно не достигаются для определенной настройки детекторной системы, то значения D11 и W17 обеспечивают эквивалентную чувствительность детектора. Компенсация должна быть ограничена максимальным увеличением на два номера одиночных проволочек для двух недостающих номеров пар проволочек. По согласованию между изготовителем и заказчиком, компенсация может быть расширена максимально до трех номеров одиночных проволочек для трех недостающих номеров разрешенных пар проволочек, если требуемая чувствительность контроля может быть продемонстрирована в конкретном случае.

Так как контрастная чувствительность цифровых детекторов (DDA) зависит от времени интегрирования и тока трубки (мА), для получения радиографического изображения при данных расстоянии и напряжении на трубке видимость одиночной проволочки или ступени с отверстием IQI может быть улучшена путем увеличения времени экспозиции и (или) тока трубки. Это относится также к CR, но с ограничением вследствие максимально достижимого значения SNR_N из-за собственного (структурного) шума чувствительного слоя запоминающей пластины (PSL). Максимально достижимое значение SNR_N при радиографии с использованием DDA определяется качеством процедуры настройки.

Значение SR_b детектора определяется конструктивными и аппаратными параметрами.

В случае применения способа с увеличением масштаба изображения, значение SR_b должно определяться по увеличенному изображению (SR_b изображения) и из измерений IQI двухпроволочного типа, расположенного на объекте (см. 7.7).

32

(Проект, окончательная редакция)

7.3.3 Металлические экраны для запоминающих пластин (IP) и защитные экраны

При использовании передних металлических экранов, требуется хороший контакт между чувствительным слоем детектора и экранами. Это может быть достигнуто применением запоминающих пластин (IP) в вакуумной упаковке или путем приложения давления. Свинцовые экраны, неплотно прилегающие к запоминающим пластинам (IP), могут способствовать нерезкости изображения. Усиление, полученное при использовании свинцовых экранов в контакте с запоминающими пластинами, значительно меньше, чем при пленочной радиографии.

Многие запоминающие пластины (IP) очень чувствительны к низкоэнергетическому обратно-рассеянному излучению и рентгеновской флюоресценции заднего свинцового защитного экрана. Этот эффект, способствующий в значительной степени образованию краевой нерезкости и снижению CNR, рекомендуется свести к минимуму. Рекомендуется использовать стальные или медные защитные экраны непосредственно за запоминающими пластинами (IP). Также стальные или медные экраны, установленные между свинцовым защитным экраном и запоминающей пластиной (IP), могут улучшать качество изображения. В современных конструкциях кассет и детекторов может учитываться этот эффект, и они могут быть сконструированы таким образом, что дополнительный стальной или медный защитный экран вне кассеты не требуется.

П р и м е ч а н и е – Из-за защитного слоя между свинцовой пластиной и чувствительным слоем запоминающей пластины (IP) эффект усиления электронами значительно снижается и проявляется при более высоких энергиях. В зависимости от энергии излучения и конструкции защитного слоя, эффект усиления составляет от 20 % до 100 % (по сравнению со случаем отсутствия экрана) при обычных энергиях рентгеновского излучения.

Малый эффект усиления, создаваемый свинцовым экраном, контактирующим с запоминающей пластиной (IP), может быть компенсирован увеличением времени экспозиции или значением экспозиции (мА х мин), если не применяется свинцовый экран. Так как свинцовые экраны в контакте с запоминающими пластинами (IP) могут приводить к появлению царапин на запоминающих пластинах, если они не были

(Проект, окончательная редакция)

аккуратно разделены для проведения процесса сканирования, свинцовые экраны рекомендуется использовать для промежуточной фильтрации рассеянного излучения вне кассеты. Для контроля стального образца толщиной менее 12 мм промежуточная фильтрация не рекомендуется.

В таблицах 3 и 4 приведены рекомендуемые материалы и толщины экранов для различных источников излучения. Другие толщины экрана могут быть согласованы между изготовителем и заказчиком при условии обеспечения требуемого качества изображения. Металлические экраны рекомендуется использовать перед запоминающими пластинами (IP), также они могут уменьшить влияние рассеянного излучения при использовании с DDA.

7.4 Направление пучка излучения

Центральная ось пучка излучения должна быть направлена в центр участка контроля перпендикулярно к поверхности объекта контроля в данной точке, за исключением тех случаев, когда может быть продемонстрировано, что определенные дефекты лучше выявляются при другой направленности пучка излучения. В таком случае допускается другое приемлемое направление пучка излучения. Другие схемы радиографического контроля могут быть использованы по согласованию между изготовителем и заказчиком.

П р и м е р – Для лучшего выявления несплавления по кромке, пучок излучения рекомендуется направлять под углом подготовки кромок под сварку.

7.5 Уменьшение рассеянного излучения

7.5.1 Металлические фильтры и коллиматоры

С целью уменьшения эффекта рассеянного излучения, первичное излучение должно быть как можно лучше коллимировано в направлении контролируемого участка объекта.

При использовании источников излучения Se 75, Ir 192 и Co 60, или рентгеновского оборудования свыше 1 MB, или в случае бокового (кромочного) рассеяния, в качестве фильтра рассеянного излучения с малыми энергиями может быть использован свинцовый лист между объектом контроля и кассетой или DDA. Толщина такого листа должна быть от 0,5 до 2 мм в зависимости от просвечиваемой

(Проект, окончательная редакция)

толщины. В качестве фильтра, кроме свинца, могут быть использованы другие материалы, например олово, медь или сталь. Тонкий стальной или медный экран рекомендуется располагать между свинцовым листом и детектором.

7.5.2 Защита от обратно-рассеянного излучения

Наличие обратно-рассеянного излучения должно быть проверено для каждой новой системы CR посредством установки свинцовой буквы «В» позади каждой кассеты (высотой не менее 10 мм и толщиной не менее 1,5 мм). Если данный символ выявляется на радиографическом снимке (радиограмме) как более светлый (негативное представление, т.е. уменьшенное линеаризованное значение градации серого), то это свидетельствует о наличии обратно-рассеянного излучения. Если символ темнее (увеличенное линеаризованное значение градации серого) или невидим, то цифровой радиографический снимок (радиограмма) принимается, и он демонстрирует хорошую защиту от обратно-рассеянного излучения.

При необходимости, детектор должен быть защищен от обратно-рассеянного излучения свинцовым листом толщиной не менее 1 мм или оловянным листом толщиной не менее 1,5 мм, расположенным за детектором. Для уменьшения влияния рентгеновской флюоресценции свинца должна применяться дополнительная защита стальной или медной пластиной (толщиной около 0,5 мм) между свинцовым экраном и детектором. При энергии излучения выше 80 кэВ не должны использоваться свинцовые экраны, контактирующие с обратной стороной детектора.

7.6 Расстояние от источника излучения до объекта контроля

Минимальное расстояние от источника излучения до объекта контроля f_{min} зависит от размера источника или размера фокусного пятна d и расстояния от объекта контроля до детектора b. Размер источника или размер фокусного пятна d должен соответствовать EN 12543 или EN 12679.

Если размер источника излучения или размер фокусного пятна определяются двумя размерами, следует использовать наибольший.

Для схем контроля, кроме изображенных на рисунках 2 b, 8 b, 13 b и 14 b, расстояние f следует выбирать таким образом, чтобы отношение этого расстояния к

(Проект, окончательная редакция)

размеру источника излучения или к размеру фокусного пятна d, т.е. f/d, было не меньше значений, определяемых по формулам (1) и (2):

- для класса А:

$$\frac{f}{d} \ge 7,5b^{2/3},$$
 (1)

- для класса В:

$$\frac{f}{d} \ge 15b^{2/3},$$
 (2)

где *b* – расстояние от объекта контроля до детектора, мм.

Если расстояние b меньше, чем 1,2t, то расстояние b в формулах (1) и (2) и на рисунке 21 должно быть заменено номинальной толщиной t.

Для определения расстояния от источника излучения до объекта контроля f_{\min} можно использовать номограмму на рисунке 21. Эта номограмма основывается на формулах (1) и (2).

Для схем контроля в соответствии с рисунками 2 *b*, 8 *b*, 13 *b* и 14 *b* расстояние f следует выбирать таким образом, чтобы отношение расстояния f к размеру источника *d*, т.е. f/d, было не меньше значений, определяемых по формулам (3) и (4):

- для класса А:

$$\frac{f}{d} \ge 7,5 \ \frac{b}{\sqrt[3]{t}},\tag{3}$$

- для класса В:

$$\frac{f}{a} \ge 15 \ \frac{b}{\sqrt[3]{t}},\tag{4}$$

где *t* – номинальная толщина объекта контроля, мм;

b – расстояние от объекта контроля до детектора, мм.

Для класса A, когда требуется выявление плоскостных дефектов, минимальное расстояние от источника излучения до объекта контроля f_{min} должно быть такое же, как для класса B, для того, чтобы в два раза уменьшить геометрическую нерезкость.

При критически важных технических применениях материалов, подверженных растрескиванию, должны использоваться более чувствительные, чем для класса

В, радиографические способы.

В миллиметрах

Рисунок 21 — Номограмма для определения минимального расстояния от источника излучения до объекта контроля f_{\min} , в зависимости от расстояния от объ-

екта контроля до детектора b и размера источника излучения d

Собственная нерезкость ($u_i = 2SR_b^{detector}$) системы с цифровым детектором и геометрическая нерезкость (u_G) вносят вклад в общую нерезкость (u_T) изображения, если она не скорректирована с помощью геометрического увеличения:

$$u_T = \sqrt{u_i^2 + u_G^2} \tag{5}$$

Поэтому рекомендуется увеличение расстояния f_{\min} для компенсации любой дополнительной нерезкости детекторной системы.

Если применяют цифровые детекторы, имеющие большую собственную нерезкость, чем рентгеновские пленки, и необходимо получить малые значения общей

(Проект, окончательная редакция)

нерезкости изображения, аналогичные определенным по ISO 17636-1 (пленочная радиография), рекомендуются условия а) и б):

а) при условии, что объект контроля находится в контакте с детектором (не распространяется на способ геометрического увеличения), цифровые детекторы выбирают так, чтобы базовое пространственное разрешение детектора SR_b было меньше значений, определяемых по формулам (6) и (7) в зависимости от расстояния от объекта контроля до детектора *b*:

- для класса А:

$$SR_{\rm b} < \frac{\sqrt[3]{b}}{15},\tag{6}$$

- для класса В:

$$SR_{\rm b} < \frac{\sqrt[3]{b}}{30}.\tag{7}$$

б) если должна быть достигнута нерезкость, сравнимая с получаемой при пленочной радиографии (ISO 17636-1), то расстояние f_{\min} рекомендуется увеличить по сравнению со значениями, полученными по формулам (1) или (2) (и по рисунку 21), с помощью формул (8) и (9), если условия формул (6) или (7) выполнены:

- для класса А:

$$f_{\min} = d_{\sqrt{\frac{b^2}{(b^{2/3}/7.5^2) - 4SR_b^2}}},$$
(8)

- для класса В:

$$f_{\min} = d_{\sqrt{\frac{b^2}{(b^{2/3}/15^2) - 4SR_b^2}}}.$$
(9)

Можно определять f_{min} по формулам (1) или (2) или рисунку 21, если базовое пространственное разрешение детектора SR_b намного меньше, чем требуется по формулам (6) или (7), или достигается видимость IQI в соответствии с таблицами B.1 – B.12 путем увеличения SNR (CP II).

В таблицах В.13 и В.14 приложения В приведены максимальные значения общей нерезкости изображения и требования по SR_b для получения достаточного качества изображения для классов А и В, соответственно.

(Проект, окончательная редакция)

При использовании схемы контроля на эллипс, описанной в 7.1.6, или схемы перпендикулярной съемки, описанной в 7.1.7, в формулах (1), (2) и на рисунке 21, *b* следует заменить на наружный диаметр трубы *D*_e.

Когда источник находится вне объекта контроля, а детектор – с другой стороны (способ получения одного изображения через две стенки по 7.1.8), минимальное расстояние от источника излучения до объекта контроля определяется только толщиной стенки (то есть не зависит от диаметра трубы).

Предпочтительно избегать использования способа просвечивания через две стенки (см. 7.1.6 – 7.1.8) путем помещения источника излучения внутрь объекта контроля, чтобы достичь более подходящего направления излучения (см. 7.1.4 и 7.1.5). Рекомендуется, чтобы уменьшение минимального расстояния от источника излучения до объекта контроля было не больше 20 %.

Если источник находится в центре (внутри) объекта контроля, а детектор – снаружи (см. 7.1.4), и при условии соблюдения требований к IQI, этот процент может быть увеличен. Однако уменьшение минимального расстояния от источника излучения до объекта контроля должно быть не более 50 %. Дальнейшее уменьшение может быть согласовано между изготовителем и заказчиком при условии выполнения требований к IQI.

7.7 Способ геометрического увеличения

Препятствием для применения систем CR и DDA для радиографического контроля сварных соединений является большой (более 50 мкм) размер пикселя в большинстве матричных цифровых детекторов и систем «запоминающая пластина (IP)-сканер» по сравнению с малым размером зерна пленки (благодаря этому пленка имеет очень высокое пространственное разрешение). Эту трудность можно преодолеть, воспользовавшись уникальным свойством DDA увеличивать SNR_N (CP II) в изображении и (или), при необходимости, геометрическим увеличением.

П р и м е ч а н и е – Геометрическое увеличение отличается от цифрового увеличения просматриваемого изображения (зума). Уменьшение нерезкости изображения обеспечивается только геометрическим увеличением.

(Проект, окончательная редакция)

Увеличение отношения сигнала к шуму в изображении (см. 7.3.2, CPII) является одним из вариантов, если требуемая чувствительность по IQI (подтвержденная IQI проволочного типа или ступенчатого с отверстиями типа) и SR_b (подтвержденное IQI двухпроволочного типа, см. приложение С) не отвечают требованиям, приведенных в соответствующих таблицах В.1 – В.14 приложения В.

Другим вариантом является применение способа геометрического увеличения с увеличенным расстоянием между детектором (IP или DDA) и объектом контроля в сочетании с использованием рентгеновской трубки с малым фокусным пятном или источника гамма-излучения с малым размером источника.

Если после использования обоих методов требуемые значения показателей качества по IQI все еще не достигнуты, системы CR или DDA не могут быть использованы для контроля.

Правильность выбора увеличения должна быть доказана путем использования IQI двухпроволочного типа на объекте контроля для всех радиографических снимков (радиограмм) изделия. IQI двухпроволочного типа должен быть расположен на ближней к детектору стороне объекта контроля, если $2SR_b > d$ (d – размер источника или размер фокусного пятна). В противном случае, IQI двухпроволочного типа должен быть расположен на объекте контроля со стороны источника излучения. Для выбора коэффициента увеличения рекомендуется располагать IQI двухпроволочного коэффициента и размера источника излучения или размера фокусного пятна и размера источника излучения. Для выбора коэффициента увеличения рекомендуется располагать IQI двухпроволочного коэффициента увеличения и размера источника излучения или размера фокусного пятна на окончательных радиографических снимках (радиограммах) изделий должен быть виден только один IQI.

Если применяется автоматизированное распознавание дефектов, IQI могут создавать помехи в цифровых изображениях. Если IQI не используются при получении серийных радиографических снимков (радиограмм) изделий, качество изображения должно периодически подтверждаться проверочными радиограммами с изображениями IQI проволочного или ступенчатого с отверстиями типов и IQI двухпроволочного типа.

(Проект, окончательная редакция)

(11)

Нерезкость изображения u_{Im} может быть оценена по увеличению v, геометрической нерезкости u_G и SR_b по формуле (10):

$$u_{\rm Im} = \frac{1}{\nu} \sqrt{(u_{\rm G})^2 + (2SR_{\rm b})^2},\tag{10}$$

где $u_{\mathrm{G}} = \left(\frac{SDD}{f} - 1\right)d = (v - 1)d,$

SR_b – базовое пространственное разрешение детектора при увеличении, равном 1;

SDD – расстояние от источника излучения до детектора;

f – расстояние от источника излучения до объекта контроля;

*u*_G – геометрическая нерезкость;

d –размер фокусного пятна или размер источника излучения в соответствии с EN 12543 или EN 12679;

v – геометрическое увеличение, равное отношению SDD/*f*;

*u*_{Im} – требуемая максимальная нерезкость изображения в соответствии с таблицами В.13 или В.14 приложения В для классов контроля А или В.

Для уменьшения нерезкости изображения так, чтобы она стала меньшей или равной соответствующему значению, указанному в таблицах В.13 или В.14 приложения В, геометрическое увеличение должно быть увеличено и (или) размер фокусного пятна должен быть уменьшен. Это должно быть доказано с помощью IQI двухпроволочного типа, расположенного на объекте, как описано выше.

Коэффициент геометрического увеличения обычно отличается для поверхностей объекта со стороны источника излучения и детектора. Поэтому увеличение vрекомендуется выбирать для центра объекта контроля. Рекомендуется, чтобы различие значений геометрического увеличения со стороны источника излучения и со стороны детектора было в пределах ± 25 %. Меньшие значения увеличения могут быть выбраны, если применяется СРІІ, как описано в 7.3.2.

7.8 Максимальная область при однократной экспозиции

Количество цифровых радиографических снимков (радиограмм) для полного контроля прямолинейных сварных швов (см. рисунки 1, 15, 17 и 18) и изогнутых сварных швов при расположении источника излучения вне центра (см. рисунки 2 – 4

(Проект, окончательная редакция)

и 8 – 16) целесообразно указывать в спецификации на продукцию в соответствии с техническими требованиями.

Для участка контроля с постоянной толщиной, отношение просвечиваемой толщины у внешней границы к просвечиваемой толщине в центре пучка должно быть не более 1,1 для класса В и 1,2 – для класса А.

Не рекомендуется, чтобы значения SNR_N, обусловленные любым изменением просвечиваемой толщины, были меньше указанных в таблицах 3 или 4. В качестве альтернативы, для CR, как показано в приложении D, могут быть использованы значения GV.

Размер области, подлежащей контролю, включает в себя сварной шов и зону термического влияния. Как правило, должны быть проконтролированы около 10 мм основного металла с каждой стороны сварного шва.

Рекомендации по количеству цифровых радиографических снимков (радиограмм), которое обеспечивает приемлемый контроль кольцевого стыкового сварного шва, приведены в приложении А.

7.9 Обработка данных

7.9.1 Сканирование и считывание изображения

Для получения выбранного качества изображения детекторы или сканеры должны использоваться в соответствии с условиями, рекомендованными изготовителем детектора или сканера. Цифровые радиографические снимки (радиограммы) должны быть без артефактов, обусловленных обработкой, транспортировкой или другими причинами, которые могли бы помешать расшифровке.

7.9.2 Настройка DDA

При использовании DDA должна применяться процедура настройки детектора в соответствии с рекомендациями изготовителя. Детектор должен быть настроен с помощью фонового изображения (без излучения) и, по крайней мере, одного изображения с усилением сигнала (при включенном рентгеновском излучении и однородной экспозиции). Настройка с использованием нескольких коэффициентов усиления сигнала увеличивает достигаемые SNR_N и линейность, но занимает больше времени. Чтобы свести к минимуму шум, обусловленный настройкой, все настроеч-

(Проект, окончательная редакция)

ные изображения должны быть получены при экспозиционной дозе (мА х мин или ГБк х мин), по крайней мере, в два раза большей дозы, используемой для радиографических снимков (радиограмм) контроля. Если предусмотрено документированной процедурой, настроечные изображения рекомендуется рассматривать в качестве исходных изображений для подтверждения качества контроля. Настройка должна осуществляться периодически и при существенных изменениях условий экспозиции.

7.9.3 Интерполяция плохих пикселей

Плохие пиксели – неэффективные детектирующие элементы DDA. Они описаны в [11].

При использовании DDA, в соответствии с руководством изготовителя, должна быть составлена картограмма детектора для определения карты расположения плохих пикселей. Эта карта плохих пикселей должна быть документирована. Интерполяция плохих пикселей является приемлемой и необходимой процедурой для радиографии с помощью DDA. Рекомендуется применять только DDA, не имеющие пикселей ядер скоплений (СКР) в области контроля (ROI).

Для контроля должны применяться DDA без CKP и системы CR, имеющие базовое пространственное разрешение (SR_b) детектора не более чем предусмотрено в таблицах B.13 или B.14 приложения B. Если применяется способ увеличения, SR_b^{image} должно быть определено путем измерения на изображении, как описано в приложении C, с помощью IQI двухпроволочного типа, расположенного непосредственно на объекте контроля (см. 7.7). Это значение SR_b должно быть не более значений, приведенных в таблицах B.13 или B.14 приложения B. Если SR_b детектора или изображения больше значений, приведенных в таблицах B.13 или B.14 приложения B, то может быть применен принцип компенсации CPII, как описано в 7.2.3.

Если DDA или запоминающие пластины применяются для контроля дефектов размером, примерно равным пространственному разрешению изображения SR_b^{image} , требуемое SNR_N должно быть значительно увеличено. Контроль должен быть проведен на основании соглашения между изготовителем и заказчиком. Указанное уве-

(Проект, окончательная редакция)

личение SNR_N может компенсировать местное увеличение нерезкости, возникающее из-за интерполяции плохих пикселей.

Оценка плохих пикселей должна осуществляется периодически.

П р и м е ч а н и е –По аналогии с СРІІ, увеличенное SNR_N компенсирует местную нерезкость, вызванную интерполяцией плохих пикселей. Это положение рассматривается как СРІІІ

7.9.4 Обработка изображения

7.9.4.1 Для определения SNR, SR_b и SNR_N цифровые данные радиографического детектора должны быть представлены линеаризованными значениями градации серого, которые прямо пропорциональны дозе излучения. Для оптимального отображения изображения рекомендуется иметь интерактивную регулировку контрастности и яркости. Дополнительные функции фильтрации, профилирования и инструмент для определения SNR, SNR_N целесообразно интегрировать в программное обеспечение для отображения и анализа изображения. При особо важном анализе изображения оператор должен расшифровывать изображение при коэффициенте масштабирования (цифрового увеличения) от 1:1 (это означает, что один пиксель цифрового радиографического снимка (радиограммы) представлен одним пикселем монитора) до 1:2 (означает, что один пиксель цифрового радиографического снимка (радиограммы) представлен четырьмя пикселями монитора).

7.9.4.2 Дополнительные средства обработки изображений, примененные для обработки сохраненных исходных данных (например высокочастотная фильтрация (фильтр, пропускающий высокие частоты) для отображения изображения) должны быть документированы, воспроизводимы и быть согласованы между изготовителем и заказчиком.

7.9.4.3 Если при оценке IQI проволочного или ступенчатого с отверстиями типа используется дополнительная обработка изображений (например высокочастотная фильтрация), то те же самые параметры фильтра должны быть использованы как для оценки сварного шва, так и для определения значения показателя качества по IQI.

44

(Проект, окончательная редакция)

7.10 Условия просмотра и хранение цифровых радиографических снимков (радиограмм)

Оценка цифровых радиографических снимков (радиограмм) должна проводиться в затемненном помещении. Настройка монитора должна быть проверена с помощью соответствующего тестового изображения.

Дисплей для оценки изображения должен удовлетворять минимальным требованиям:

а) минимальная яркость – 250 кд/m^2 ;

b) отображать не менее 256 оттенков серого;

с) минимальная контрастность – 1:250;

d) отображать, по крайней мере, 1 миллион пикселей размером менее 0,3 мм.

Исходные изображения (места контроля) должны сохраняться с полным разрешением, передаваемым детекторной системой. Чтобы обеспечить отсутствие артефактов изображений с детектора, до сохранения данных должны применяться только операции обработки изображения, связанные с настройкой детектора (например коррекция смещения, настройка по усилению для балансировки детектора и коррекция плохих пикселей, см. [11]).

Для обеспечения долговременного хранения данных с использованием только сжатия без потерь, оно должно быть дублирующим и поддерживаться соответствующими алгоритмами резервного копирования.

8 Протокол контроля

Для каждой экспозиции или ряда экспозиций должен быть подготовлен протокол контроля, содержащий информацию об использованном радиографическом методе и (или) о других условиях, что позволит лучше интерпретировать полученные результаты.

Протокол контроля должен включать в себя как минимум следующую информацию:

а) название контролирующей организации;

b) объект контроля;

(Проект, окончательная редакция)

с) материал;

d) термическую обработку;

е) геометрию сварного шва;

f) толщину материала;

g) процесс сварки;

h) процедуру контроля, включая требования к приемке;

i) способ цифровой радиографии и класс, требуемую чувствительность по IQI в соответствии с настоящим стандартом;

j) схему контроля в соответствии с 7.1;

k) увеличение;

l) используемую систему маркировки;

m) схему расположения детектора;

n) источник излучения, тип и размер фокусного пятна, а также использованное оборудование;

о) детектор, экраны и фильтры, базовое пространственное разрешение детектора;

р) достигнутое и требуемое SNR_N для DDA или достигнутые и требуемые значения градаций серого и/или SNR_N для CR;

 q) для CR: тип сканера и следующие параметры: размер пикселя, скорость сканирования, коэффициент усиления, интенсивность лазера, размер лазерного пятна;

r) для DDA: тип и следующие параметры: коэффициент усиления, длительность кадра, количество кадров, размер пикселя, процедура настройки;

s) использованное напряжение на рентгеновской трубке и сила тока или активность и тип источника излучения;

t) время экспозиции и расстояние от источника излучения до детектора;

u) тип и положение индикаторов качества изображения (IQI);

v) результаты контроля, включающие данные применяемого программного обеспечения, значения показаний IQI;

(Проект, окончательная редакция)

w) использованные параметры обработки изображения, например цифровых фильтров;

x) любые отклонения от настоящего стандарта, по соглашению между изготовителем и заказчиком;

у) фамилия, ссылка на сертификационное удостоверение и подпись ответственного лица (лиц);

z) даты экспозиции и составления протокола контроля.

Приложение А

(обязательное)

Рекомендуемое количество экспозиций, обеспечивающее приемлемое качество контроля кольцевых стыковых сварных швов

Минимальное требуемое количество экспозиций для труб наружным диаметром более 100 мм представлено на рисунках А.1 – А.4.

Если изменение толщины стенки контролируемого соединения $\Delta t/t$ при использовании одиночной экспозиции не превышает 20 %, то применяют рисунки А.3 и А.4. Такой способ рекомендуется только при малой вероятности наличия поперечных трещин или при контроле сварного шва на наличие таких дефектов другими методами неразрушающего контроля.

Если Δ*t/t* меньше или равно 10 %, то применяют рисунки А.1 и А.2. При этом также вероятно выявление поперечных трещин.

Если объект контролируется на наличие одиночных поперечных трещин, то требуемое минимальное количество цифровых радиографических снимков (радиограмм) возрастает по сравнению со значениями на рисунках А.1 – А.4.

Рисунок А.1 – Минимальное количество экспозиций N при просвечивании через одну стенку с источником излучения снаружи, при максимально допустимом увеличении просвечиваемой толщины Δ*t/t* из-за наклонного направления излучения в проверяемой области, равном 10 % (класс В), как функция отношений *t/D*_e и *D*_e/*f*

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

1 – внутренняя стенка трубы

Рисунок А.2 – Минимальное количество экспозиций N при эксцентрическом просвечивании с источником излучения внутри, а также при просвечивании через две стенки при максимально допустимом увеличении просвечиваемой толщины $\Delta t/t$ изза наклонного направления излучения, равном 10 % (класс В), как функция отношений t/D_e и D_e /SDD

Рисунок А.3 – Минимальное количество экспозиций *N* при просвечивании через одну стенку с источником излучения снаружи, при максимально допустимом увеличении просвечиваемой толщины Δ*t/t* из-за наклонного направления излучения в проверяемой области, равном 20 % (класс А), как функция отношений *t/D*_e и *D*_e/*f*

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

Рисунок А.4 – Минимальное количество экспозиций N при эксцентрическом просвечивании с источником излучения внутри, а также при просвечивании через две стенки при максимально допустимом увеличении просвечиваемой толщины $\Delta t/t$ изза наклонного направления излучения, равном 20 % (класс А), как функция отношений t/D_e и D_e /SDD

52

Приложение В

(обязательное)

Минимальные значения показателей качества изображения

В.1 Способ контроля через одну стенку; IQI со стороны источника излу-

чения

Таблица В.1 – IQI проволочного типа

Класс качества изображения А	
Номинальная толщина <i>t</i> , мм	Номер проволоки IQI
до 1,2 включ.	W 18
св. 1,2 до 2,0 включ.	W 17
св. 2,0 до 3,5 включ.	W 16
св. 3,5 до 5,0 включ.	W 15
св. 5,0 до 7,0 включ.	W 14
св. 7,0 до 10,0 включ.	W 13
св. 10,0 до 15,0 включ.	W 12
св. 15,0 до 25,0 включ.	W11
св. 25,0 до 32,0 включ.	W 10
св. 32,0 до 40,0 включ.	W 9
св. 40,0 до 55,0 включ.	W 8
св. 55,0 до 85,0 включ.	W 7
св. 85,0 до 150,0 включ.	W 6
св. 150,0 до 250,0 включ.	W 5
св. 250,0	W 4

Таблица В.2 – IQI ступенчатого с отверстиями типа

Класс качества изображения А	
Номинальная толщина <i>t</i> , мм	Номер отверстия IQI
до 2,0 включ.	Н 3
св. 2,0 до 3,5включ.	H 4
св. 3,5 до 6,0 включ.	Н 5
св. 6,0 до 10,0 включ.	Н 6
св. 10,0 до 15,0 включ.	Н 7
св. 15,0 до 24,0 включ.	H 8
св. 24,0 до 30,0 включ.	Н9
св. 30,0 до 40,0 включ.	H 10
св. 40,0 до 60,0 включ.	H 11
св. 60,0 до 100,0 включ.	H 12
св. 100,0 до 150,0 включ.	H 13
св. 150,0 до 200,0 включ.	H 14
св. 200,0 до 250,0 включ.	H 15
св. 250,0 до 320,0 включ.	Н 16

(Проект, окончательная реоакция)	
св. 320,0 до 400,0 включ.	H 17
св. 400,0	H 18

Т а б л и ц а В.3 – IQI проволочного типа

`

Класс качества изображения В	
Номинальная толщина <i>t</i> , мм	Номер проволоки IQI
до 1,5 включ.	W 19
св. 1,5 до 2,5 включ.	W 18
св. 2,5 до 4,0 включ.	W 17
св. 4,0 до 6,0 включ.	W 16
св. 6,0 до 8,0 включ.	W 15
св. 8,0 до 12,0 включ.	W 14
св. 12,0 до 20,0 включ.	W 13
св. 20,0 до 30,0 включ.	W 12
св. 30,0 до 35,0 включ.	W 11
св. 35,0 до 45,0 включ.	W 10
св. 45,0 до 65,0 включ.	W 9
св. 65,0 до120,0 включ.	W 8
св. 120,0 до 200,0 включ.	W 7
св. 200,0 до 350,0 включ.	W 6
св. 350	W 5

Т а б л и ц а В.4 – IQI ступенчатого с отверстиями типа

Класс качества изображения В	
Номинальная толщина <i>t</i> , мм	Номер отверстия IQI
до 2,5	Н 2
св. 2,5 до 4,0 включ.	Н 3
св. 4,0 до 8,0 включ.	H 4
св. 8,0 до 12,0 включ.	Н 5
св. 12,0 до 20,0 включ.	Н б
св. 20,0 до 30,0 включ.	H 7
св. 30,0 до 40,0 включ.	H 8
св. 40,0 до 60,0 включ.	Н 9
св. 60,0 до 80,0 включ.	H 10
св. 80,0 до 100,0 включ.	H 11
св. 100,0 до 150,0 включ.	H 12
св. 150,0 до 200,0 включ.	H 13
св. 200,0 до 250,0 включ.	H 14

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

В.2 Способ контроля через две стенки; два изображения; IQI со стороны

источника излучения

Таблица В.5 – IQI проволочного типа

Класс качества изображения А	
Просвечиваемая толщина w, мм	Номер проволоки IQI
до 1,2включ.	W 18
св. 1,2 до 2,0 включ.	W 17
св. 2,0 до 3,5 включ.	W 16
св. 3,5 до 5,0 включ.	W 15
св. 5,0 до 7,0 включ.	W 14
св. 7,0 до 12,0 включ.	W 13
св. 12,0 до 18,0 включ.	W 12
св. 18,0 до 30,0 включ.	W 11
св. 30,0 до 40,0 включ.	W 10
св. 40,0 до 50,0 включ.	W 9
св. 50,0 до 60,0 включ.	W 8
св. 60,0 до 85,0 включ.	W 7
св. 85,0 до 120,0 включ.	W 6
св. 120,0 до 220,0 включ.	W 5
св. 220,0 до 380,0 включ.	W 4
св. 380,0	W 3

Т а б л и ц а В.6 – IQI ступенчатого с отверстиями типа

Класс качества изображения А	
Просвечиваемая толщина w, мм	Номер отверстия IQI
до 1,0 включ.	Н 3
св. 1,0 до 2,0 включ.	H 4
св. 2,0 до 3,5 включ.	Н 5
св. 3,5 до 5,5 включ.	Н б
св. 5,5 до 10,0 включ.	Н 7
св. 10,0 до 19,0 включ.	H 8
св. 19,0 до 35,0 включ.	Н 9

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция) Таблица В.7 – IQI проволочного типа

Класс качества изображения В	
Просвечиваемая толщина w, мм	Номер проволоки IQI
до 1,5 включ.	W 19
св. 1,5 до 2,5 включ.	W 18
св. 2,5 до 4,0 включ.	W 17
св. 4,0 до 6,0 включ.	W 16
св. 6,0 до 8,0 включ.	W 15
св. 8,0 до 15,0 включ.	W 14
св. 15,0 до 25,0 включ.	W 13
св. 25,0 до 38,0 включ.	W 12
св. 38,0 до 45,0 включ.	W 11
св. 45,0 до 55,0 включ.	W 10
св. 55,0 до 70,0 включ.	W 9
св. 70,0 до 100,0 включ.	W 8
св. 100,0 до 170,0 включ.	W 7
св. 170,0 до 250,0 включ.	W 6
св. 250	W 5

Т а б л и ц а В.8 – IQI ступенчатого с отверстиями типа

Класс качества изображения В	
Просвечиваемая толщина w, мм	Номер отверстия IQI
до 1,0 включ.	Н 2
св. 1,0 до 2,5 включ.	Н 3
св. 2,5 до 4,0 включ.	H 4
св. 4,0 до 6,0 включ.	Н 5
св. 6,0 до 11,0 включ.	Н 6
св. 11,0 до 20,0 включ.	Н 7
св. 20,0 до 35,0 включ.	H 8

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

В.3 Способ контроля через две стенки; одно или два изображения; IQI со

стороны детектора

Таблица В.9 – IQI проволочного типа

Класс качества изображения А	
Просвечиваемая толщина w, мм	Номер проволоки IQI
до 1,2 включ.	W 18
св. 1,2 до 2,0 включ.	W 17
св. 2,0 до 3,5 включ.	W 16
св. 3,5 до 5,0 включ.	W 15
св. 5,0 до 10,0 включ.	W 14
св. 10,0 до 15,0 включ.	W 13
св. 15,0 до 22,0 включ.	W 12
св. 22,0 до 38,0 включ.	W 11
св. 38,0 до 48,0 включ.	W 10
св. 48,0 до 60,0 включ.	W 9
св. 60,0 до 85,0 включ.	W 8
св. 85,0 до 125,0 включ.	W 7
св. 125,0 до 225,0 включ.	W 6
св. 225,0 до 375,0 включ.	W 5
св. 375,0	W 4

Таблица В.10 – IQI ступенчатого с отверстиями типа

Класс качества изображения А	
Просвечиваемая толщина w, мм	Номер отверстия IQI
до 2,0 включ.	Н 3
св. 2,0 до 5,0 включ.	H 4
св. 5,0 до 9,0 включ.	Н 5
св. 9,0 до 14,0 включ.	Н 6
св. 14,0 до 22,0 включ.	Н 7
св. 22,0 до 36,0 включ.	H 8
св. 36,0 до 50,0 включ.	Н 9
св. 50,0 до 80,0 включ.	H 10

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция) Таблица В.11 – IQI проволочного типа

Класс качества изображения В	
Просвечиваемая толщина w, мм	Номер проволоки IQI
до 1,5 включ.	W 19
св. 1,5 до 2,5 включ.	W 18
св. 2,5 до 4,0 включ.	W 17
св. 4,0 до 6,0 включ.	W 16
св. 6,0 до 12,0 включ.	W 15
св. 12,0 до 18,0 включ.	W 14
св. 18,0 до 30,0 включ.	W 13
св. 30,0 до 45,0 включ.	W 12
св. 45,0 до 55,0 включ.	W 11
св. 55,0 до 70,0 включ.	W 10
св. 70,0 до 100,0 включ.	W 9
св. 100,0 до 180,0 включ.	W 8
св. 180,0 до 300,0 включ.	W 7
св. 300	W 6

Т а б л и ц а В.12 – IQI ступенчатого с отверстиями типа

Класс качества изображения В		
Просвечиваемая толщина w, мм	Номер отверстия IQI	
до 2,5 включ.	Н 2	
св. 2,5 до 5,5 включ.	Н 3	
св. 5,5 до 9,5 включ.	H 4	
св. 9,5 до 15,0 включ.	Н 5	
св. 15,0 до 24,0 включ.	Н 6	
св. 24,0 до 40,0 включ.	Н 7	
св. 40,0 до 60,0 включ.	H 8	
св. 60,0 до 80,0 включ.	Н 9	

В.4 Нерезкость

Таблица В.13 – Максимальная нерезкость для класса качества изображения А

для всех способов

Класс качества изображения А: IQI двухпроволочного типа по ISO 19232-5		
Просвечиваемая толщина <i>w</i> ^a , мм	Минимальное значение по- казателя IQI и максималь- ная нерезкость (ISO 19232- 5) ^b , мм	Максимальное базовое пространственное разрешение (равное толщине проволоки и зазору) ^b SR _b ^{image} , мм
<i>w</i> ≤ 1,0	D13 0,10	0,05
$1,0 < w \le 1,5$	D12 0,125	0,063
$1,5 < w \le 2,0$	D11 0,16	0,08
$2,0 < w \le 5,0$	D10 0,20	0,10
$5,0 < w \le 10,0$	D9 0,26	0,13
$10,0 < w \le 25,0$	D8 0,32	0,16
$25,0 < w \le 55,0$	D7 0,40	0,20
$55,0 < w \le 150,0$	D6 0,50	0,25
$150,0 < w \le 250,0$	D5 0,64	0,32
w > 250,0	D4 0,80	0,40

^а Для схемы контроля через две стенки с одним изображением вместо просвечиваемой толщины *w* должна применяться номинальная толщина *t*.

^bСчитывание показанийIQI для выбора системы (см. приложение С) применяется для контактной радиографии. Если используется способ геометрического увеличения (см. 7.7), то считывание показанийIQI должно быть выполнено на соответствующих проверочных радиограммах.

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

Таблица В.14 – Максимальная нерезкость для класса качества изображения В

для всех способов

Класс качества изображения В: IQI двухпроволочного типа по ISO 19232-5		
Просвечиваемая толщина w ^a , мм	Минимальное значение по- казателя IQI и максималь- ная нерезкость (ISO 19232- 5) ^b , мм	Максимальное базовое пространственное разрешение (равное толщине проволоки и зазору) ^b SR _b ^{image} , мм
<i>w</i> ≤ 1,5	D13+ 0,08	0,04
$1,5 < w \le 4,0$	D13 0,10	0,05
$4,0 < w \le 8,0$	D12 0,125	0,063
$8,0 < w \le 12,0$	D11 0,16	0,08
$12,0 < w \le 40,0$	D10 0,20	0,10
$40,0 < w \le 120,0$	D9 0,26	0,13
$120,0 < w \le 200,0$	D8 0,32	0,16
w > 200,0	D7 0,40	0,20

^а Для схемы контроля при просвечивании через две стенки с одним изображением вместо просвечиваемой толщины *w* должна применяться номинальная толщина *t*.

^b Считывание показаний IQI для выбора системы (см. приложение С) применяется для контактной радиографии. Если используется способ геометрического увеличения (см. 7.7), считывание показаний IQI должно быть выполнено на соответствующих проверочных радиограммах

П р и м е ч а н и е - «D13+» достигается, если разрешение (отчетливо видны) пары проволочек D13, для которой отношение глубины впадины к высоте пиков на профиле распределения значений градаций серого больше, чем 20 %.

Приложение С

(обязательное)

Определение базового пространственного разрешения

Исходным условием для измерения корректных значений базового пространственного разрешения являются линеаризованные значения градаций серого. Это означает, что значения градации серого должны быть пропорциональны дозе излучения в данном месте изображения. Это, как правило, поддерживается программным обеспечением изготовителя.

Для определения базового пространственного разрешения детектора SR_b IQI двухпроволочного типа должен располагаться непосредственно на поверхности детектора или кассеты и показания с него должны быть сняты в соответствии с ISO 19232-5.

П р и м е ч а н и е – Если IQI двухпроволочного типа располагается на объекте контроля, а не на детекторе, имеет место измерение базового пространственного разрешения изображения SR_b^{image} , а не базового пространственного разрешение SR_b детектора($SR_b^{detector}$).

Если первая нерезкая пара проволочек не может быть явно распознана (по ISO 19232-5), то должен применяться метод 20 % отношения глубины впадины к пикам на профиле распределения значений градаций серого (dip), как указано далее.

В результате проверки с помощью IQI на цифровом радиографическом снимке (радиограмме) должна быть зарегистрирована первая пара проволочек, дающая отношение глубины впадины (dip) к высоте двойного пика на профиле распределения значений градаций серого менее 20 % (см. рисунок C.1) [например D8, как показано на рисунке C.1, c]. Для распознавания первой пары проволочек с отношением глубины менее 20 % [при усреднении обоих минимумов – рисунок C.1, d] должна быть использована функция профилирования из программного обеспечения для обработки изображений. Для улучшения SNR на графике профиля, должно быть проведено усреднение, по крайней мере, по 21-ой отдельной профильной линии [рисунок C.1, b и c].

Путем использования IQI двухпроволочного типа, соответствующего стандарту ISO 19232-5, должна быть определена собственная нерезкость изображения *u*_i и

(Проект, окончательная редакция)

рассчитано базовое пространственное разрешение детектора SR_b по следующей формуле

$$SR_{\rm b} = \frac{1}{2}u_{\rm i} \tag{C.1}$$

Для того чтобы избежать эффектов наложения, IQI двухпроволочного типа должен быть расположен под углом примерно от 2° до 5° к рядам или колонкам пикселей, как показано на рисунке С.1.

Определение базового пространственного разрешения SR_b для системы цифрового детектора должно выполняться без объекта контроля в соответствии с одним из следующих условий экспозиции:

а) контроль легких сплавов:

- напряжение трубки – 90 кВ,

- предварительный фильтр из алюминия толщиной 1 мм;

b) контроль стали и медных сплавов с толщиной просвечивания до 20 мм включ.:

- напряжение трубки – 160 кВ,

- предварительный фильтр из меди толщиной 1 мм;

с) контроль стали и медных сплавов с толщиной просвечивания более 20 мм:

- напряжение трубки – 220 кВ,

- предварительный фильтр из меди толщиной 2 мм;

d) радиография с использованием гамма-источников и рентгеновских источников высокой энергии:

- использование указанного гамма-источника или источника рентгенов-

ского излучения с напряжением на трубке более 1 МВ,

- предварительный фильтр из меди толщиной 2 мм или из стали толщиной 4 мм для Se75, Ir192; из меди толщиной 4мм или из стали толщиной 8 мм для Co60 или рентгеновского источника с напряжением на трубке более 1MB.

IQI двухпроволочного типа должен располагаться непосредственно на поверхности детектора или кассеты. Расстояние от источника излучения до детектора

(Проект, окончательная редакция)

должно быть 100 ± 5 см. На радиографическом снимке (радиограмме) с изображением этого IQI среднее значение градации серого в цифровом изображении должно быть больше 50 % от максимального значения градации серого, значение SNR должно превышать 100 - для стандартных систем с размером пикселя от 80 мкм включ., или 70 – для систем с высоким разрешением с размером пикселя менее 80мкм. Базовое пространственное разрешение применяемой цифровой системы [см. формулу (C.1)], измеренное на проверочной радиограмме, а также настройки системы, должны быть записаны в протоколе контроля.

Базовое пространственное разрешение детектора для CR-систем должно быть измерено в перпендикулярном и параллельном направлениях по отношению к направлению сканирования лазерного луча. Наибольшее из двух значений должно быть использовано как результирующее базовое разрешение детектора(SR_b или SR_b^{detector}).

а) Изображение на радиографическом снимке (радиограмме) IQI двухпроволочного типа

b) Профиль IQIдвухпроволочного типа, усредненный, как минимум, по 21-ой линии Рисунок С.1 – Пример оценки IQI двухпроволочного типа с полученным значением показателя качества по IQI – D8, соответствующим первой паре проволочек с с

(Проект, окончательная редакция)

отношением глубины впадины к пикам на профиле распределения значений гра-

даций серого (dip) менее 20 %

 d) Схема расчета отношения глубины впадины к пикам на профиле распределения значений градаций серого (dip): dip=100x(A+B-2C)/(A+B), %

D7, D8 – значения IQI двухпроволочного типа; Х – расстояние; Ү – амплитуда

Рисунок С.1, лист 2

Для повышения точности в измерении значений SR_b или SR_b^{detector}, значение 20 % отношения глубины впадины к пикам на профиле распределения значений градаций серого (dip) рекомендуется получать интерполяцией глубин модуляции для соседних парных проволочек.

На рисунке С.2 представлена соответствующая процедура для CR-системы с высоким разрешением.

64

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

а) График участка измеренного профиля IQI для системы высокого разрешения с определенными

глубинами модуляции (dip)

b) Интерполяция зависимости глубины модуляции от диаметра парных проволочек (для определения SR_b). Значение 20 % определяется из пересечения с линией 20 %, в результате чего iSR_b = 66 мкм

Рисунок С.2 – Пример определения интерполированного базового пространственного разрешения (iSR_b^{detector}) путем интерполяции измеренной

глубины модуляции (dip) для соседних парных проволочек

Для расчета точки пересечения с 20 % линией, как показано на рисунке С.2, зависимость глубины модуляции (dip) от диаметра проволочки рекомендуется аппроксимировать полиномом второго порядка. Для интерполяции должны использоваться значения только больше нуля.

Интерполированное значение SR_b (см. рисунок C.2) должно быть зарегистрировано, как «интерполированное значение SR_b », или «i $SR_b^{detector}$ ». По согласованию

(Проект, окончательная редакция)

между изготовителем и заказчиком это значение может использоваться вместо не-

интерполированного значения SR_b.
Приложение D

(обязательное)

Определение минимальных значений градации серого при применении CR

D.1 Определение SNR_N по SNR_{measured}

Процедура измерения отношения сигнал-шум подробно описана в ISO 16371-1:2011, п. 6.1. Измеренное отношение сигнала к шуму, SNR_{measured}, обычно определяется для области размером 20x55 пикселей (области интереса) как отношение линеаризованного среднего значения градации серого к его стандартному отклонению, как описано в ISO 16371-1:2011, п.6.1.1. Линеаризованное значение градации серого прямо пропорционально дозе излучения в измеряемой области интереса (ROI) и равно нулю для неэкспонированных областей. Этот подход должен быть выбран для измерения SNR_N.

П р и м е ч а н и е – Ширину области измерения SNR рекомендуется ограничить 20 пикселями. Длина может быть более или равна 55 пикселей. При большей длине повышается точность измерения SNR. Особенно это важно, если с помощью программного обеспечения определяется медиана значений SNR по линиям, как описано в ISO 16371-1.

При одинаковых экспозициях нерезкие цифровые системы достигают измеренных значений SNR, которое выше, чем у резких систем, но имеют более низкую эффективность обнаружения мелких дефектов. Поэтому измеренное SNR приводится к базовому пространственному разрешению. Системы с одинаковым нормализованным SNR имеют одинаковую способность визуализации мелких деталей.

Нормализация основывается на значении базового пространственного разрешения CR-системы (SR_b), предоставленном изготовителем или определенном пользователем по процедуре, описанной в приложении C.

Все значения SNR_N определяются следующим образом:

$$SNR_N = SNR_{measured} \times \frac{88,6 \ \mu m}{SR_b}$$
 (D.1)

Если значение базового пространственного разрешения введено в инструмент программого обеспечения и для измерения выделена ROI, значение SNR_N обычно

(Проект, окончательная редакция)

определяется программным обеспечением изготовителя системы.

Если были изменены любые параметры сканера, такие как размер пикселя, скорость сканирования и (или) тип запоминающей пластины, требуется новая квалификация CR-системы путем измерения базового пространственного разрешения SR_b.

В таблице D.1 приведены значения SNR_N и преобразование в ненормализованные значения SNR для CR-систем с разными параметрами SR_b . Пользователь может определить по таблице D.1 преобразованные значения SNR, применяемые вместо значений SNR_N , если программное обеспечение изготовителя не определяет значения SNR_N .

Таблица D.1 – Требуемые значения SNR_{measured} для выбранных CR-систем с различными SR_b, эквивалентныеSNR_N

Параметр системы	C	истема с разреп	с высоки 1ением	M		Станд	артная сі	истема	
Показатель по IQI двухпроволочного типа	13+	13	12	11	10	9	8	7	6
Базовое пространственное разрешение SR _b	40 мкм	50 мкм	63 мкм	80 мкм	100 мкм	130 мкм	160 мкм	200 мкм	250 мкм
Требуемое SNR _N (таблицы 3 и 4)		Требуемое SNR _{measured}							
150	65	85	110	135	170	220	270	340	425
120	55	70	85	110	135	180	220	270	340
100	45	60	75	90	115	150	185	225	285
70	35	40	50	65	80	105	130	160	200

D.2 Определение минимальных значений градаций серого

Так как для измерения SNR_N требуется зона цифрового изображения с однородным распределением градации серого, то при проведении CR-контроля объектов неравномерной толщины, может быть более предпочтительно указание минимальных значений градации серого вместо минимальных значений SNR_N . Использование различного программного обеспечения обработки изображений, может это упростить.

(Проект, окончательная редакция)

Для измерения корректных значений SNR_N и эквивалентных значений градации серого исходным условием являются линеаризованные уровни серого. Это означает, что значения градаций серого должны быть прямо пропорциональны (без смещения) дозе излучения в данном месте сканированной запоминающей пластины. Это, как правило, поддерживается программным обеспечением изготовителя.

Зависимость SNR_N изображения от среднего значения градации серого может быть использована в CR-технологии, если не произведена обработка изображения (например изменения контраста, инверсия и т.д.) и CR-система обеспечивает линеаризованные значения градаций серого. Взаимосвязь между градациями серого и SNR_N может быть использована только для конкретной комбинации типа сканера, параметров сканирования, типа и марки запоминающих пластин. При изменения настроек сканера, таких как размер пикселя, скорость сканирования, напряжение фотоумножителя или усиление требуется новое определение минимального значения градации серого, эквивалентного требуемому SNR_N .

П р и м е ч а н и е – Для CR взаимосвязь между SNR_N и средним значением градации серого не зависит от настроек напряжения и силы тока для рентгеновской трубки с напряжением от 50 кВ до нескольких мегавольт, а также от гамма-источников. Это не применимо к DDA-системам. Данные квалификации минимальных значений градации серого, эквивалентных минимальным значениям SNR_N, могут быть использованы при любых условиях экспозиции, указанных в приложении C.

Для определения минимального значения градации серого, эквивалентного минимальному значению SNR_N по таблицам 3 или 4, может быть применена последовательность действий, описанная в перечислениях а) – d):

а) Выполнить экспонирование ступенчатого клина, как показано на рисунке
D.1. Рекомендуется использовать ступенчатый клин со ступенями большой площади
для предотвращения эффектов затенения. Рекомендуется, чтобы ступенчатый клин
полностью перекрывал цифровое изображение детектора.

b) Измерить среднее значение градации серого и SNR_N на каждой ступени, как показано на рисунке D.2.

с) Построить график зависимости измеренного SNR_N (SNR) от среднего значения градаций серого (см. рисунок D.3).

(Проект, окончательная редакция)

d) Определить эквивалентное минимальное значение градации серого для минимального требуемого SNR_N для спецификации в соответствии с таблицами 3 или
4. В таблице D.2 приведен пример.

1 – рентгеновская трубка; 2 – медный фильтр; 3 – коллиматор; 4 – медный ступенчатый клин; 5 – кассета с IP

Рисунок D.1 – Схема для определения эквивалентных значений градаций серого CR-системы для требуемых минимальных значений SRNN (по таблицам

3 или 4)

semi.tif (2364 x 2964)			The local diversion of	
▶ \'				
		Statistics in w	ndow	×
	and the second se		start size	end
	_	horizontal 19	52 20	1971
		vertical 14	26 55	1480
		samples in wir	idow: 1100	
		min 993	median 1015	max 1031
	-5		stdev	mean/stdey
		1015	5,774	175,8
		SNR measure	ments according	g to EN 14784:
		median sing	le line mean :	1015
		median sing	le line stdev :	5,624
		unnormaliz	ed SNR: Lesselution (mm)	181
		Normalised	sne:	121
and the second se				
			Recall	Record

Т а б л и ц а D.2 – Пример спецификации минимальных значений градации серого

(рассматривать совместно с рисунком D.3)

	Соответствующие мини-	Соответствующие мини-		
Требуемое SNR _N	мальные уровни серого при	мальные уровни серого при		
	настройке усиления 1	настройке усиления 2		
150	1 250	2 500		
120	1 015	2 030		
100	590	1 180		
70	270	540		

ГОСТ ISO 17636-2 – 20 (Проект, окончательная редакция)

1 – измеренное значение на ступенчатом клине; *2* – кривая, аппроксимирующая результаты измерений на ступенчатом клине; *X* – значение градации серого GV; *Y* – нормализованное SNR_N

П р и м е ч а н и е – Значения градаций серого могут быть указаны как эквивалентные различным значениям SRN_N для применяемого CR-сканера, параметров сканирования (например настройка усиления 1) и типа IP.

Рисунок D.3 – График зависимости SRN_N от средних значений градаций серого по измерениям в соответствии с рисунком D.2

Полученное значение градации серого может быть принято для определения минимального значения градации серого (GV_{min}) CR-системы аналогично минимальной оптической плотности пленки в пленочной радиографии (см. рисунок D.3).

В качестве альтернативы вышеописанной процедуре, запоминающая пластина (IP) может быть экспонирована последовательно с разной экспозицией (мА*мин) (для рентгеновских источников) или временем экспозиции (для гамма-источников). Экспозиции рекомендуется выполнять при тех же условиях, как описано в приложении С.

Дополнительные экраны или пластины из стали или алюминия должны устанавливаться перед кассетой или конвертом для запоминающей пластины, если это применяется для радиографических снимков (радиограмм) изделий. Минимальные значения градации серого GV_{min} должны быть определены по цифровым радиогра-

(Проект, окончательная редакция)

фическим снимкам (радиограммам) как эквиваленты достигнутых и требуемых SNR_N или SNR (см. рисунок D.3), как показано в таблице D.1.

Нет необходимости измерять значения SNR или SNR_N на радиографических снимках (радиограммах) изделий, если в области интереса на радиографическом снимке (радиограмме) продукции везде достигается указанное минимальное значение градации серого GV_{min} .

Для большей точности рекомендуется чертить диаграмму, как показано на рисунке D.3.

Если минимальные значения градации серого (GV_{min}) использованы в спецификации, то должны быть документированы точные настройки CR-сканера и соответствующий тип IP.

Окончательную спецификацию минимальных значений градации серого рекомендуется представить в виде таблицы, как показано на примере таблицы D.2.

Некоторые системы сканирования могут обеспечивать сниженные значения SNR_N при очень больших значениях градации серого и низких настройках усиления. Если это имеет место, то должны быть указаны максимальные уровни градации серого, которые не должны превышаться.

Приложение Е

(справочное)

Значения градации серого. Общие замечания

Е.1 Введение

В компьютерной радиографии значения градации серого могут использоваться для передачи зрительного восприятия (видимости) как функции контраста и шума изображения (SNR или значение градации серого используется вместо оптической плотности и класса пленочной системы в пленочной радиографии); поэтому линеаризованные исходные значения градации серого используются для измерения количества излучения, проникающего через определенную область изделия. При этом для 12-битной CR-системы, значение градации серого «0» соответствует дозе излучения «0» (белое на негативном изображении радиографической пленки), а значение градации серого «4095» соответствует насыщенному детектору (черное на негативном изображении радиографической пленки).

Измерения значений градаций серого и SNR_N должны выполняться с использованием соответствующих инструментов программного обеспечения, которые определяют усредненное значение градаций серого (среднее значение) в пределах ROI и/или SNR_N, которое является отношением усредненного значения градаций серого к стандартному отклонению значений градаций серого в пределах ROI. Для количественных измерений минимальная область изображения ROI должна содержать 1 100 пикселей (т.е. 20х55 пикселей, см. ISO 16371-1).

П р и м е ч а н и е – Измеренные значения градаций серого запоминающих пластин прямо пропорциональны экспозиционной дозе для заданного качества (типа, параметров) излучения. Коэффициент пропорциональности между дозой и значением градации серого определяется внутренними (электронными) настройками усиления сканера, свойствами фотоумножителя, а также свойствами аналого-цифрового преобразователя (например, количеством бит). При любых изменениях этих параметров требуется новое определение минимальных значений градаций серого, как показано в приложении D. Некоторые системы выдают значения градаций серого в логарифмической зависимости или в виде квадратного корня или нормированных величин с неизвестным

(Проект, окончательная редакция) нулевым значением. Эти значения должны быть линеаризованы и связаны с действительным нулевым значением (соответствующим нулевой экспозиционной дозе), в противном случае значения градации серого не могут трактоваться как эквивалент оптической плотности пленок и не могут быть использованы для измерений SNR или CNR. Значения градаций серого и SNR_N должны быть определены до любой цифровой фильтрации цифрового радиографического снимка (радиограммы).

Е.2 Контроль шумов

При экспозиции в неоптимальных условиях, изображения при компьютерной радиографии становятся «зашумленными». Чрезмерный шум изображения при CR (низкие SNR_N или CNR) может стать существенным препятствием для достижения требований к качеству изображения.

Неоптимальные условия, которые следует избегать, включают перечисления a) – f):

a) Низкие экспозиционные дозы от рентгеновского или гамма-источника приводят к малым CNR. CNR возрастает нелинейно с увеличением экспозиции (мA х сек или ГБк х мин) до максимального достижимого значения из-за структурного шума (шума с фиксированной текстурой) применяемых детекторов.

b) Запоминающие пластины (IP) генерируют шумы изображения из-за внутренней структуры кристаллов, чувствительной к излучению, и шероховатости поверхности. Для высококачественной радиографии рекомендуется выбирать запоминающие пластины (IP) с низким структурным шумом (мелкозернистого типа). Изготовителю рекомендуется представить информацию о максимальном достигаемом SNR_N систем сканер-IP.

с) Матричные цифровые детекторы (DDA) генерируют шум вследствие различных свойств детекторных элементов. Они могут быть выровнены с помощью процедуры настройки. Современные методы настройки позволяют достичь очень высокие значения SNR. Термические и другие эффекты, а также ограниченное время экспозиции при получении настроечных изображений, ограничивают эффективность настройки, и небольшой остаточный шум с фиксированной текстурой сохраняется.

d) Шумы генерируются некоторыми материалами, такими как высоконикеле-

(Проект, окончательная редакция)

вые сплавы или материалы с шероховатой поверхностью. Шум может затруднить видимость мелких дефектов и даже уменьшить показание IQI.

е) Обратно-рассеянное излучение вносит существенный вклад в значения градации серого в изображениях и в шум. Поскольку обычно это не способствует контрасту радиографического изображения (CNR), видимость IQI снижается.

f) При слишком высокой энергии излучения получается низкий контраст при постоянном уровне шума (для того же значения градации серого). Из-за этого уменьшается CNR и, следовательно, видимость IQI. Это может быть скомпенсировано увеличением требуемого значения градации серого или уменьшением напряжения на рентгеновской трубке, как при пленочной радиографии (CPI).

Библиография

[1] ISO 5579, Non-destructive testing – Radiographic examination of metallic materials using film and X- or gamma-rays – Basic rules

[2] ISO 5580, Non-destructive testing – Industrial radiographic illuminators – Minimum requirements (Контроль неразрушающий – Негатоскопы для промышленной радиографии – Минимальные требования)*

[3] ISO 1923

2-3, Non-destructive testing – Image quality of radiographs – Part 3: Image quality classes for ferrous metals

[4] EN 444, Non-destructive testing – General principles for radiographic examination of metallic materials by X- and gamma-rays

[5] EN 12681, Founding – Radiographic examination

[6] EN 14784-2, Non-destructive testing – Industrial computed radiography with storage phosphor imaging plates – Part 2: General principles for testing of metallic materials using X-rays and gamma rays

[7] EN 25580, Non-destructive testing – Industrial radiographic illuminators – Minimum requirements (ISO 5580:1985) (Контроль неразрушающий – Негатоскопы для промышленной радиографии – Минимальные требования)*

[8] ASTM E1000, Standard guide for radioscopy

[9] ASTM E2445, Standard practice for qualification and long – Term stability of computed radiology systems

[10] ASTM E2446, Standard practice for classification of computed radiology systems

[11] ASTM E2597, Standard practice for manufacturing characterization of digital detector arrays

[12] ASTM E2698, Standard practice for radiological examination using digital detector arrays

[13] ASTM E2736, Standard guide for digital detector array radiology

[14] ASTM E2737, Standard practice for digital detector array performance evaluation and long-term stability

(Проект, окончательная редакция)

* Официальный перевод этого стандарта находится в Федеральном информационном фонде технических регламентов и стандартов Российской Федерации.

	ГОСТ ISO 17636-2 – 20
	(Проект, окончательная редакция)
УДК 621.774.08:620.179:006.354	ОКС 23.040.10
	77.040.20
	77.140.75
-	

Ключевые слова: трубы стальные, неразрушающий контроль, радиографический метод

Генеральный д ОАО «РосНИТ	иректор <u>`И»</u>	ая полнись		<u>И.Ю. Пышминцев</u> инициалы фамилия
		un nodimob		niniquanti, quantina
Научныи руководитель разработки	Директор НУЦ «Контр и диагностика» должность	ооль –	личная подпись	<u>Н.Н.Волкова</u> инициалы, фамилия